リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Deepwater response in the African cultivated rice Oryza glaberrima」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Deepwater response in the African cultivated rice Oryza glaberrima

Luo, Quanshu Sasayama, Daisuke Nakazawa, Misaki Hatanaka, Tomoko Fukayama, Hiroshi Azuma, Tetsushi 神戸大学

2023.01.02

概要

Partial submergence of Oryza sativa deepwater rice elicits enhancement of internodal elongation, referred to as deepwater response, conferred by three types of genes, SNORKEL1/2 (SK1/2), SEMIDWARF1 (SD1), and ACCELERATOR OF INTERNODE ELONGATION 1 (ACE1). We investigated the presence and expression of these genes in the African cultivated rice Oryza glaberrima and the relationship between these genes and the deepwater response of O. glaberrima. In 49 of the 50 accessions tested, one or two SK genes were identified, which could be divided into three types of SK1 and four types of SK2. The accessions with the SK2 type whose expression was induced by submergence demonstrated rapid internodal elongation under submergence. In most of these accessions, submergence also increased the expression of SD1 and ACE1 genes. However, the accessions did not possess the haplotype of SD1 that is associated with high deepwater response in O. sativa. In contrast, they possessed the type of ACE1 gene similar to that in O. sativa deepwater rice. These results indicate that the molecular mechanisms underlying induction of deepwater response in O. glaberrima are similar to that found in deepwater rice of O. sativa and suggest that most O. glaberrima cultivars, including upland cultivars, can exhibit rapid internodal elongation under submergence.

この論文で使われている画像

参考文献

Carney, J. (2005). Rice and memory in the age of enslavement:

Atlantic passages to Suriname. Slavery & Abolition, 26(3),

325–348. https://doi.org/10.1080/01440390500319562

Catling, D. (1992). The Niger Basin and West Africa. In Rice in

Deep Water (pp. 353–376). Macmillan Press.

Diop, B., Wang, D. R., Drame, K. N., Gracen, V., Tongoona, P.,

Dzidzienyo, D., Nartey, E., Greenberg, A. J., Djiba, S.,

Danquah, E. Y., & McCouch, S. R. (2020). Bridging old and

new: Diversity and evaluation of high iron-associated stress

response of rice cultivated in West Africa. Journal of

Experimental Botany, 71(14), 4188–4200. https://doi.org/10.

1093/jxb/eraa182

Fornasiero, A., Wing, R. A., & Ronald, P. (2022). Rice

domestication. Current Biology, 32(1), R20–24. https://doi.

org/10.1016/j.cub.2021.11.025

Hattori, Y., Miura, K., Asano, K., Yamamoto, E., Mori, H.,

Kitano, H., Matsuoka, M., & Ashikari, M. (2007). A major QTL

confers rapid internode elongation in response to water rise

in deepwater rice. Breeding Science, 57(4), 305–314. https://

doi.org/10.1270/jsbbs.57.305

Hattori, Y., Nagai, K., Furukawa, S., Song, X. J., Kawano, R.,

Sakakibara, H., Wu, J., Matsumoto, T., Yoshimura, A.,

Kitano, H., Matsuoka, M., Mori, H., & Ashikari, M. (2009). The

ethylene response factors SNORKEL1 and SNORKEL2 allow

rice to adapt to deep water. Nature, 460(7258), 1026–1030.

https://doi.org/10.1038/nature08258

Hattori, Y., Nagai, K., Mori, H., Kitano, H., Matsuoka, M., &

Ashikari, M. (2008). Mapping of three QTLs that regulate

internode elongation in deepwater rice. Breeding Science,

58(1), 39–46. https://doi.org/10.1270/jsbbs.58.39

Hu, M., Lv, S., Wu, W., Fu, Y., Liu, F., Wang, B., Li, W., Gu, P.,

Cai, H., Sun, C., & Zhu, Z. (2018). The domestication of plant

architecture in African rice. The Plant Journal, 94(4), 661–669.

https://doi.org/10.1111/tpj.13887

Inouye, J., Hakoda, H., & NG, N. Q. (1989). Preliminary studies on

some ecological characteristics of African deep water rice

(Oryza glaberrima Steud.). Japanese Journal of Tropical

Agriculture, 33(3), 158–163. https://doi.org/10.11248/

jsta1957.33.158

Jones, M. P., Dingkuhn, M., Aluko, G. K., & Semon, M. (1997).

Interspecific Oryza sativa L. × O. glaberrima Steud. progenies

in upland rice improvement. Euphytica, 94, 237–246. https://

doi.org/10.1023/A:1002969932224

Jones, M. P., Mande, S., & Aluko, K. (1997). Diversity and poten­

tial of Oryza glaberrima Steud in upland rice breeding. Breed

PLANT PRODUCTION SCIENCE

Science, 47(4), 395–398. https://doi.org/10.1270/jsbbs1951.

47.395

Kawano, N., Ito, O., & Sakagami, J. -I. (2008). Flash flooding

resistance of rice genotypes of Oryza sativa L.,

O. glaberrima Steud., and interspecific hybridization

progeny. Environmental and Experimental Botany, 63(1–3),

9–18. https://doi.org/10.1016/j.envexpbot.2007.12.001

Kende, H., van der Knaap, E., & Cho, H. -T. (1998). Deepwater

rice: A model to study stem elongation. Plant Physiology, 118

(4), 1105–1110. https://doi.org/10.1104/pp.118.4.1105

Kuroha, T., & Ashikari, M. (2020). Molecular mechanisms and

future improvement of submergence tolerance in rice.

Molecular Breeding, 40, 41. https://doi.org/10.1007/s11032020-01122-y

Kuroha, T., Nagai, K., Gamuyao, R., Wang, D. R., Furuta, T.,

Nakamori, M., Kitaoka, T., Adachi, K., Minami, A., Mori, Y.,

Mashiguchi, K., Seto, Y., Yamaguchi, S., Kojima, M.,

Sakakibara, H., Wu, J., Ebana, K., Mitsuda, N., OhmeTakagi M., and Ashikari, M. (2018). Ethylene-gibberellin sig­

naling underlies adaptation of rice to periodic flooding.

Science, 361(6398), 181–186. https://doi.org/10.1126/

science.aat1577

Linares, O. F. (2002). African rice (Oryza glaberrima): History and

future potential. Proceedings of the National Academy of

Sciences of the United States of America, 99(25),

16360–16365. https://doi.org/10.1073/pnas.252604599

Mochizuki, T., Ryu, K., & Inouye, J. (1998). Elongation ability of

African floating rice (Oryza glaberrima Steud.). Plant produc­

tion science, 1(2), 134–135. https://doi.org/10.1626/pps.1.134

Nagai, K., Kurokawa, Y., Mori, Y., Minami, A., Reuscher, S., Wu, J.,

Matsumoto, T., & Ashikari, M. (2022). SNORKEL genes relating

to flood tolerance were pseudogenized in normal cultivated

rice. Plants, 11(3), 376. https://doi.org/10.3390/

plants11030376

Nagai, K., Mori, Y., Ishikawa, S., Furuta, T., Gamuyao, R., Niimi, Y.,

Hobo, T., Fukuda, M., Kojima, M., Takebayashi, Y.,

Fukushima, A., Himuro, Y., Kobayashi, M., Ackley, W.,

Hisano, H., Sato, K., Yoshida, A., Wu, J., Sakakibara, H.,

Ashikari, M. . . . Ashikari, M. (2020). Antagonistic regulation

of the gibberellic acid response during stem growth in rice.

Nature, 584(7819), 109–114. https://doi.org/10.1038/s41586020-2501-8

Ndjiondjop, M. N., Semagn, K., Sow, M., Manneh, B.,

Gouda, A. C., Kpeki, S. B., Pegalepo, E., Wambugu, P.,

Sié, M., & Warburton, M. L. (2018). Assessment of genetic

variation and population structure of diverse rice genotypes

adapted to lowland and upland ecologies in Africa using

75

SNPs. Frontiers in plant science, 9, 446. https://doi.org/10.

3389/fpls.2018.00446

Nuijten, E., van Treuren, R., Struik, P. C., Mokuwa, A., Okry, F.,

Teeken, B., & Richards, P. (2009). Evidence for the emergence

of new rice types of interspecific hybrid origin in West

African Farmers’ Fields. PLoS One, 4(10), e7335. https://doi.

org/10.1371/journal.pone.0007335

Okishio, T., Sasayama, D., Hirano, T., Akimoto, M., Itoh, K., &

Azuma, T. (2014). Growth promotion and inhibition of the

Amazonian wild rice species Oryza grandiglumis to survive

flooding. Planta, 240(3), 459–469. https://doi.org/10.1007/

s00425-014-2100-8

Sasaki, A., Ashikari, M., Ueguchi-Tanaka, M., Itoh, H., Nishimura, A.,

Swapan, D., Ishiyama, K., Saito, T., Kobayashi, M., Khush, G. S.,

Kitano, H., & Matsuoka, M. (2002). Green revolution: A mutant

gibberellin-synthesis gene in rice. Nature, 416, 701–702. https://

doi.org/10.1038/416701a

Sasayama, D., Niikawa, M., Hatanaka, T., Fukayama, H., &

Azuma, T. (2022). Adaptive responses to flooding in wild

rice species with various genomes other than AA. Plant

production science, 25(3), 350–358. https://doi.org/10.1080/

1343943X.2022.2073896

Sasayama, D., Okishio, T., Hirano, T., Fukayama, H., Hatanaka, T.,

Akimoto, M., & Azuma, T. (2018). Internodal elongation

under submergence in the Amazonian wild rice species

Oryza glumaepatula: The growth response is induced by

hypoxia but not by ethylene. Plant Growth Regulation, 85

(1), 123–132. https://doi.org/10.1007/s10725-018-0378-4

Spielmeyer, W., Ellis, M. H., & Chandler, P. M. (2002). Semidwarf

(sd-1), “green revolution” rice, contains a defective gibber­

ellin 20-oxidase gene. Proceedings of the National Academy

of Sciences of the United States of America, 99(13),

9043–9048. https://doi.org/10.1073/pnas.132266399

van Andel, T. R. (2010). African rice (Oryza glaberrima Steud.):

Lost crop of the enslaved Africans discovered in Suriname.

Economic Botany, 64(1), 1–10. https://doi.org/10.1007/

s12231-010-9111-6

van Andel, T. R., Meyer, R. S., Aflitos, S. A., Carney, J. A.,

Veltman, M. A., Copetti, D., Flowers, J. M., Havinga, R. M.,

Maat, H., Purugganan, M. D., Wing, R. A., & Schranz, M. E.

(2016). Tracing ancestor rice of Suriname Maroons back to

its African origin. Nature Plants, 2, e16149. https://doi.org/10.

1038/nplants.2016.149

Watarai, M., & Inouye, J. (1997). Effect of water conditions on LEI

position in African floating rice (Oryza glaberrima Steud.).

Japanese Journal of Crop Science, 66(2), 300–306. https://doi.

org/10.1626/jcs.66.300

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る