リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Studies on the roles of EMT-associated microRNAs in cervical cancer and aggressive endometrial cancer」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Studies on the roles of EMT-associated microRNAs in cervical cancer and aggressive endometrial cancer

徐, 道知 北海道大学

2022.06.30

概要

[Background and Purpose]
Cervical cancer (CC) is one of the most common gynecological malignancies. Cancermetastasis begins with the process of epithelial-mesenchymal transition (EMT), whichconvertswell-polarized epithelial cells to non-polarized mesenchymal cells that acquire motilityandinvasion properties and exhibit cancer stem cell-like properties. The 90-kDa heat shockprotein(HSP90) promotes EMT and tumor progression by protecting and stabilizing its client proteins. To date, the exact function of HSP90 in CC development is still unclear. MicroRNAs (miRNAs)function as post-transcriptional regulators of mRNAs by inhibiting the translationof theirrespective RNA targets or degrading their targets. The reduction in miR-361 expressionindiverse tumor types and its tumor-suppressing function has been described. We previouslyreported that miR-361 represses the expression of target genes implicated in EMTandcancerstemness in endometrial cancer (EC). Long non-coding RNAs (lncRNAs) can act as molecularsponges of miRNAs, thereby affecting the expression of target genes of miRNAs. Wedemonstrated that lncRNA NEAT1 drives EC progression by sponging miR-361. Ourmeta-analysis indicated that the 3′-untranslated region (3′-UTR) of HSP90 mRNAcontainsasequence complementary to the seed regions of miR-361. We aimed to explore the roleofmiR-361 in cervical cancer and the mechanisms underlying its function in EMT. We speculatedthat miR-361 directly targets HSP90 to inhibit the invasion and EMT features, andNEAT1functions as an oncogenic lncRNA that suppresses miR-361 expression and induces EMTandsphere formation in CC cells.

[Materials and Methods]
We used an online database to examine the expression of miR-361 in human cervical cancerand normal cervical tissues. The levels of miR-361 in one immortalized but non-malignant human endometrial cell line (EM) and in two human CC cell lines were measured byreal-timePCR analysis. The association between miR-361 expression and the overall survival outcomesin CC patients from the Cancer Genome Atlas cohort was analyzed using online databases. Cell functional assays were used to explore the effects of miR-361 overexpression/knockdownonthe proliferation, invasion, EMT and sphere formation of CC cells. The possible target genesofmiR-361 were predicted using miRNA-target prediction programs. Luciferase reporter assayswere performed to verify the interaction between miR-361, HSP90, and lncRNANEAT1.

[Results]
[1] The expression of miR-361 was downregulated in CC tissues. The levels of miR-361inCC cell lines (HeLa and SiHa) were significantly lower than those in EMcells. Lowerexpression of miR-361 was significantly associated with a poorer prognosis incervical cancer.

[2] Overexpression of miR-361 induced an epithelial phenotype and significantly decreasedcell invasion and sphere formation. However, the knockdown of miR-361 promotedamesenchymal phenotype and greatly increased cancer cell invasion and sphere formation. Upregulation of miR-361 increased the expression of E-cadherin and inhibitedtheexpression of Vimentin in CC cells. Knockdown of miR-361 had opposite effectsonthese genes, suggesting that miR-361 inhibits EMT and sphere formation in CCcells.

[3] HSP90 was predicted as a potential target of miR-361. HSP90 expressionwassignificantly higher in CC tissues and CC cells. CC patients with higher HSP90expression had worse overall survival than those with lower HSP90 expression. Ectopicexpression of miR-361 decreased, while inhibition of miR-361 increased the expressionof HSP90 in CC cells. The luciferase reporter assays demonstrated overexpressionofmiR-361 significantly decreases luciferase activity of the wild-type (WT) HSP90 3′-UTR, and the transfection with miR-361 inhibitor markedly induced the luciferaseactivity of the WT HSP90 3′-UTR in CC cells. However, transfection with miR-361mimic or miR-361 inhibitor had no obvious influence on the luciferase activityof thereporter vector harboring the mutant HSP90 3′-UTR, suggesting that miR-361directlytargets and reduces HSP90 expression in CC cells.

[4] Knockdown of HSP90 reduced mesenchymal phenotype of SiHa cells, andoverexpression of HSP90 in HeLa cells led to mesenchymal-like morphologyandtriggered cell scattering. Downregulation of HSP90 significantly inhibited the invasionand cancer stem cell properties of SiHa cells and overexpression of HSP90 promotedtheinvasion and cancer stem cell properties of HeLa cells. Silencing of HSP90 enhancedtheexpression of E-cadherin and reduced the protein expression of Vimentin. However, overexpression of HSP90 decreased E-cadherin expression and increased Vimentinexpression, suggesting that HSP90 promotes EMT and sphere formation in CCcells.

[5] Our meta-analysis revealed a significantly higher level of NEAT1 in CCsamplescompared with normal samples. The expression of NEAT1 was significantly upregulatedin CC cells compared with EM cells. The depletion of NEAT1 by siRNAsignificantlyupregulated miR-361 levels in CC cells. The luciferase reporter assays verified thedirect binding relationship between NEAT1 and miR-361 in CC cells. Silencing of NEAT1significantly suppressed the expression of HSP90 and Vimentin but increased thelevelsof E-cadherin in CC cells. NEAT1 knockdown led to decreased cell invasion andsphereformation. Taken together, our results support the notion that NEAT1 promotesCCinvasion and sphere formation through up-regulating HSP90 expression by bindingwithmiR-361, a tumor suppressor that directly suppresses HSP90 expression.

[Discussion]
MiR-361 represses tumor progression by targeting multiple components of manyessential signaling pathways implicated in tumor growth, EMT, metastasis, drug resistance, angiogenesisand inflammation. HSP90 is a crucial molecular chaperone that forms a complexwithco-chaperones to promote tumor progression by protecting and stabilizing numerous client proteins. Consistent with these previous reports, our findings supported the complexityofmiR-361-regulated signaling pathways that determine the phenotypes of human tumor cellsand demonstrated that the loss of miR-361 expression elevates HSP90 levels, leadingtotheacquisition of EMT and cancer stem cell-like phenotypes of CC cells. Additionally, HSP90could be secreted by cancer cells, and extracellular HSP90 promotes EMT and cancer cell invasion and stimulates metastatic spread. Therefore, the impacts of miR-361 andNEAT1expression on the secretion of HSP90 by CC cells should be studied using the enzyme-linkedimmunosorbent assay. Whether the secreted HSP90 acts as a pivotal regulator of CCprogression and metastasis requires further investigation. Moreover, the overexpressionofNEAT1 exerts its oncogenic functions in most human cancers by functioning as a molecularsponge for miRNAs. In this study, we demonstrated for the first time that, by competitivelybinding to miR-361 and suppressing its expression, NEAT1 upregulates the expressionofHSP90 to promote EMT, invasion, and sphere formation of CC cells. Future investigationwill be required to determine the mechanisms by which NEAT1 performs this function incervical cancer.

[Conclusion]
MiR-361 directly targets HSP90 to inhibit the invasion and EMT features, andNEAT1functions as an oncogenic lncRNA that suppresses miR-361 expression and induces EMTandsphere formation in CC cells. Our findings provided useful insights into the mechanisms of CCEMT and metastasis.

参考文献

Aftab, M., Poojary, S.S., Seshan, V., Kumar, S., Agarwal, P., Tandon, S., Zutshi, V., andDas, B.C. (2021). Urine miRNA signature as a potential non-invasive diagnostic and prognosticbiomarker in cervical cancer. Sci. Rep. 11, 10323.

Agarwal, V., Bell, G.W., Nam, J.W., and Bartel, D.P. (2015). Predicting effective microRNAtarget sites in mammalian mRNAs. Elife. 4, e05005.

Aguirre-Gamboa, R., Gomez-Rueda, H., Martínez-Ledesma, E., Martínez-Torteya, A., Chacolla-Huaringa, R., Rodriguez-Barrientos, A., Tamez-Peña, J.G., and Treviño V. (2013). SurvExpress: an online biomarker validation tool and database for cancer gene expressiondatausing survival analysis. PLoS One. 8, e74250.

Arun, G., Diermeier, S.D., and Spector, D.L. (2018). Therapeutic Targeting of LongNon-Coding RNAs in Cancer. Trends Mol. Med. 24, 257-277

Bader, A.G., Brown, D., Stoudemire, J., and Lammers, P. (2011). Developing therapeuticmicroRNAs for cancer. Gene Ther. 18, 1121-1126.

Banerji, U. (2009). Heat shock protein 90 as a drug target: some like it hot. Clin. Cancer Res. 15, 9-14.

Betel, D., Wilson, M., Gabow, A., Marks, D.S., and Sander, C. (2008). The microRNA.orgresource: targets and expression. Nucleic Acids Res. 36, D149-153.

Bradley, E., Bieberich, E., Mivechi, N.F., Tangpisuthipongsa, D., and Wang, G. (2012). Regulation of embryonic stem cell pluripotency by heat shock protein 90. StemCells. 30, 1624-1633

Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A., and Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36cancers in 185 countries. CA Cancer J. Clin. 68, 394-424

Cao, M.X., Jiang, Y.P., Tang, Y.L., and Liang, X.H. (2017). The crosstalk between lncRNAandmicroRNA in cancer metastasis: orchestrating the epithelial-mesenchymal plasticity. Oncotarget. 8, 12472-12483.

Casalou, C., Faustino, A., and Barral, D.C. (2016). Arf proteins in cancer cell migration. Small GTPases. 7, 270-282.

Castle, P.E., Ashfaq, R., Ansari, F., and Muller, C.Y. (2005). Immunohistochemical evaluationof heat shock proteins in normal and preinvasive lesions of the cervix. Cancer Lett. 229, 245-252.

Chandrashekar, D.S., Bashel, B., Balasubramanya, S.A.H., Creighton, C.J., Ponce-Rodriguez, I., Chakravarthi, B.V.S.K., and Varambally, S. (2017). UALCAN: A Portal for FacilitatingTumor Subgroup Gene Expression and Survival Analyses. Neoplasia. 19, 649-658.

Chatterjee, S., and Burns, T.F. (2017). Targeting Heat Shock Proteins in Cancer: APromisingTherapeutic Approach. Int. J. Mol. Sci. 18, 1978.

Chen, L., Xiong, Y., Li, J., Zheng, X., Zhou, Q., Turner, A., Wu, C., Lu, B., and Jiang, J. (2017). PD-L1 Expression Promotes Epithelial to Mesenchymal Transition in Human Esophageal Cancer. Cell. Physiol. Biochem. 42, 2267-2280

Chen, P., Quan, J., Jin, L., Lin, C., Xu, W., Xu, J., Guan, X., Chen, Z., Ni, L., Yang, S., et al. (2018). miR-216a-5p acts as an oncogene in renal cell carcinoma. Exp. Ther. Med. 15, 4039-4046.

Chen, R.Q., Xu, X.H., Liu, F., Li, C.Y., Li, Y.J., Li, X.R., Jiang, G.Y., Hu, F., Liu, D., Pan, F., et al. (2019). The Binding of PD-L1 and Akt Facilitates Glioma Cell InvasionUponStarvation via Akt/Autophagy/F-Actin Signaling. Front. Oncol. 9, 1347.

Chong, K.Y., Kang, M., Garofalo, F., Ueno, D., Liang, H., Cady, S., Madarikan, O., Pitruzzello, N., Tsai, C.H., Hartwich, T.M.P., et al. (2019). Inhibition of Heat Shock Protein 90 suppressesTWIST1 Transcription. Mol. Pharmacol. 96, 168-179.

Clark, C.A., Gupta, H.B., Sareddy, G., Pandeswara, S., Lao, S., Yuan, B., Drerup, J.M., Padron, A., Conejo-Garcia, J., Murthy, K., et al. (2016). Tumor-Intrinsic PD-L1 Signals RegulateCell Growth, Pathogenesis, and Autophagy in Ovarian Cancer and Melanoma. Cancer Res. 76, 6964-6974

Clarke, M.A., Devesa, S.S., Harvey, S.V., and Wentzensen, N. (2019). Hysterectomy-CorrectedUterine Corpus Cancer Incidence Trends and Differences in Relative Survival Reveal Racial Disparities and Rising Rates of Nonendometrioid Cancers. J. Clin. Oncol. 37, 1895-1908

Condrat, C.E., Thompson, D.C., Barbu, M.G., Bugnar, O.L., Boboc, A., Cretoiu, D., Suciu, N., Cretoiu, S.M., and Voinea, S.C. (2020). miRNAs as Biomarkers in Disease: Latest FindingsRegarding Their Role in Diagnosis and Prognosis. Cells. 9, 276.

Dai, X., Ge, J., Wang, X., Qian, X., Zhang, C., and Li X. (2013). OCT4 regulatesepithelial-mesenchymal transition and its knockdown inhibits colorectal cancer cell migrationand invasion. Oncol. Rep. 29, 155-160.

De Blasio, A., Vento, R., and Di Fiore, R. (2018). Mcl-1 targeting could be an intriguingperspective to cure cancer. J. Cell. Physiol. 233, 8482-8498.

Deng, M., Brägelmann, J., Kryukov, I., Saraiva-Agostinho, N., and Perner, S. (2017). FirebrowseR: an R client to the Broad Institute's Firehose Pipeline. Database (Oxford). 2017, baw160.

Díez-Villanueva, A., Mallona, I., and Peinado, M.A. (2015). Wanderer, an interactive viewer toexplore DNA methylation and gene expression data in human cancer. Epigenetics Chromatin. 8, 22.

Dong, P., Kaneuchi, M., Watari, H., Hamada, J., Sudo, S., Ju, J., and Sakuragi, N. (2011). MicroRNA-194 inhibits epithelial to mesenchymal transition of endometrial cancer cellsbytargeting oncogene BMI-1. Mol. Cancer. 10, 99

Dong, P., Xiong, Y., Yu, J., Chen, L., Tao, T., Yi, S., Hanley, S.J.B., Yue, J., Watari, H., andSakuragi, N. (2018a). Control of PD-L1 expression by miR-140/142/340/383 and oncogenicactivation of the OCT4-miR-18a pathway in cervical cancer. Oncogene. 37, 5257-5268

Dong, P., Xiong, Y., Yue, J., Hanley, S.J.B., and Watari, H. (2018b). Tumor-Intrinsic PD-L1Signaling in Cancer Initiation, Development and Treatment: Beyond Immune Evasion. Front. Oncol. 8, 386.

Dong, P., Xiong, Y., Yue, J., Hanley, S. J. B., Kobayashi, N., Todo, Y., and Watari, H. (2018c). Long Non-coding RNA NEAT1: A Novel Target for Diagnosis and Therapy in HumanTumors. Front. Genet. 9, 471.

Dong, P., Xiong, Y., Yue, J., J.B.Hanley, S., Kobayashi, N., Todo, Y., and Watari, H. (2019a). Exploring lncRNA-Mediated Regulatory Networks in Endometrial Cancer Cells and the TumorMicroenvironment: Advances and Challenges. Cancers (Basel). 11, 234.

Dong, P., Xiong, Y., Yue, J., Xu, D., Ihira, K., Konno, Y., Kobayashi, N., Todo, Y., andWatari, H. (2019b). Long noncoding RNA NEAT1 drives aggressive endometrial cancer progressionvia miR-361-regulated networks involving STAT3 and tumor microenvironment-relatedgenes. J. Exp. Clin. Cancer Res. 38, 295.

Doyle, L.M., and Wang, M.Z. (2019). Overview of Extracellular Vesicles, Their Origin, Composition, Purpose, and Methods for Exosome Isolation and Analysis. Cells. 8, 727.

Droeser, R.A., Hirt, C., Viehl, C.T., Frey, D.M., Nebiker, C., Huber, X., Zlobec, I., Eppenberger-Castori, S., Tzankov, A., Rosso, R., et al. (2013). Clinical impact of programmedcell death ligand 1 expression in colorectal cancer. Eur. J. Cancer. 49, 2233-2242.

Elzakra, N., Cui, L., Liu, T., Li, H., Huang, J., and Hu, S. (2017). Mass Spectrometric Analysisof SOX11-Binding Proteins in Head and Neck Cancer Cells Demonstrates the InteractionofSOX11 and HSP90α. J. Proteome Res. 16, 3961-3968.

Engerud, H., Berg, H.F., Myrvold, M., Halle, M.K., Bjorge, L., Haldorsen, I.S., Hoivik, E.A., Trovik, J., and Krakstad, C. (2020). High degree of heterogeneity of PD-L1 and PD-1fromprimary to metastatic endometrial cancer. Gynecol. Oncol. 157, 260-267

Eskander, R.N., and Tewari, K.S. (2014). Beyond angiogenesis blockade: targeted therapyforadvanced cervical cancer. J. Gynecol. Oncol. 25, 249-259

Fan, Q., Qiu, M.T., Zhu, Z., Zhou, J.H., Chen, L., Zhou, Y., Gu, W., Wang, L.H., Li, Z.N., Xu, Y., et al. (2015). Twist induces epithelial-mesenchymal transition in cervical carcinogenesisbyregulating the TGF-β/Smad3 signaling pathway. Oncol. Rep. 34, 1787-1794.

Fares, J., Fares, M.Y., Khachfe, H.H., Salhab, H.A., and Fares, Y. (2020). Molecular principlesof metastasis: a hallmark of cancer revisited. Signal Transduct. Target. Ther. 5, 28.

Gaber, C., Meza, R., Ruterbusch, J.J., and Cote, M.L. (2016). Endometrial Cancer TrendsbyRace and Histology in the USA: Projecting the Number of New Cases from2015 to2040. J. Racial Ethn. Health Disparities. 10.1007/s40615-016-0292-2.

Gabison, E.E., Hoang-Xuan, T., Mauviel, A., and Menashi, S. (2005). EMMPRIN/CD147, anMMP modulator in cancer, development and tissue repair. Biochimie. 87, 361-368.

Gao, J., Aksoy, B.A., Dogrusoz, U., Dresdner, G., Gross, B., Sumer, S.O., Sun, Y., Jacobsen, A., Sinha, R., Larsson, E., et al. (2013). Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 6, pl1.

Gao, F., Feng, J., Yao, H., Li, Y., Xi, J., and Yang, J. (2019). LncRNA SBF2-AS1 promotestheprogression of cervical cancer by regulating miR-361-5p/FOXM1 axis. Artif. Cells Nanomed. Biotechnol. 47, 776-782.

Gato-Cañas, M., Zuazo, M., Arasanz, H., Ibañez-Vea, M., Lorenzo, L., Fernandez-Hinojal, G., Vera, R., Smerdou, C., Martisova, E., Arozarena, I., et al. (2017). PDL1 Signals throughConserved Sequence Motifs to Overcome Interferon-Mediated Cytotoxicity. Cell Rep. 20,1818-1829

Gonzalez, H., Hagerling, C., and Werb, Z. (2018). Roles of the immune systemin cancer: fromtumor initiation to metastatic progression. Genes Dev. 32, 1267-1284.

Goswami, C.P., and Nakshatri, H. (2012). PROGmiR: a tool for identifying prognostic miRNAbiomarkers in multiple cancers using publicly available data. J. Clin. Bioinforma. 2, 23

Green, A.K., Feinberg, J., and Makker, V. (2020). A Review of Immune Checkpoint BlockadeTherapy in Endometrial Cancer. Am. Soc. Clin. Oncol. Educ. Book. 40, 1-7.

Guo, H.M., Yang, S.H., Zhao, S.Z., Li, L., Yan, M.T., and Fan, M.C. (2018). LncRNANEAT1regulates cervical carcinoma proliferation and invasion by targeting AKT/PI3K. Eur. Rev. Med. Pharmacol. Sci. 22, 4090-4097.

Gupta, H.B., Clark, C.A., Yuan, B., Sareddy, G., Pandeswara, S., Padron, A.S., Hurez, V., Conejo-Garcia, J., Vadlamudi, R., Li, R., et al. (2016). Tumor cell-intrinsic PD-L1 promotestumor-initiating cell generation and functions in melanoma and ovarian cancer. Signal Transduct. Target. Ther. 1, 16030.

Hanahan, D., and Weinberg, R.A. (2011). Hallmarks of cancer: the next generation. Cell. 144, 646-674.

Hance, M.W., Dole, K., Gopal, U., Bohonowych, J.E., Jezierska-Drutel, A., Neumann, C.A., Liu, H., Garraway, I.P., and Isaacs, J.S. (2012). Secreted Hsp90 is a novel regulator of theepithelial to mesenchymal transition (EMT) in prostate cancer. J. Biol. Chem. 287, 37732-37744.

He, Y., Luo, Y., Liang, B., Ye, L., Lu, G., and He, W. (2017). Potential applications of MEG3incancer diagnosis and prognosis. Oncotarget. 8, 73282-73295.

He, B., Zhao, Z., Cai, Q., Zhang, Y., Zhang, P., Shi, S., Xie, H., Peng, X., Yin, W., Tao, Y., et al. (2020). miRNA-based biomarkers, therapies, and resistance in Cancer. Int. J. Biol. Sci. 16, 2628-2647

Hsu, S.D., Lin, F.M., Wu, W.Y., Liang, C., Huang, W.C., Chan, W.L., Tsai, W.T., Chen, G.Z., Lee, C.J., Chiu, C.M., et al. (2011). miRTarBase: a database curates experimentally validatedmicroRNA-target interactions. Nucleic Acids Res. 39, D163-169.

Hu, L., Wang, Y., Chen, Z., Fu, L., Wang, S., Zhang, X., Zhang, P., Lu, X., Jie, H., Li, M., et al. (2019). Hsp90 Inhibitor SNX-2112 Enhances TRAIL-Induced Apoptosis of HumanCervical Cancer Cells via the ROS-Mediated JNK-p53-Autophagy-DR5 Pathway. Oxid. Med. Cell. Longev. 2019, 9675450.

Huang, X.Q., Chen, X., Xie, X.X., Zhou, Q., Li, K., Li, S., Shen, L.F., and Su, J. (2014). Co-expression of CD147 and GLUT-1 indicates radiation resistance and poor prognosisincervical squamous cell carcinoma. Int. J. Clin. Exp. Pathol. 7, 1651-1666.

Ihira, K., Dong, P., Xiong, Y., Watari, H., Konno, Y., Hanley, S.J., Noguchi, M., Hirata, N., Suizu, F., Yamada, T., et al. (2017). EZH2 inhibition suppresses endometrial cancer progressionvia miR-361/Twist axis. Oncotarget. 8, 13509-13520.

Jang, S.Y., Jang, S.W., and Ko, J. (2012). Regulation of ADP-ribosylation factor 4 expressionby small leucine zipper protein and involvement in breast cancer cell migration. Cancer Lett. 314, 185-197.

Kanitz, A., Imig, J., Dziunycz, P.J., Primorac, A., Galgano, A., Hofbauer, G.F., Gerber, A.P., and Detmar, M. (2012). The expression levels of microRNA-361-5p and its target VEGFAareinversely correlated in human cutaneous squamous cell carcinoma. PLoS One. 7, e49568.

Kiesslich, T., Pichler, M., and Neureiter, D. (2013). Epigenetic control ofepithelial-mesenchymal-transition in human cancer . Mol. Clin. Oncol. 1, 3-11.

Kim, B.W., Cho, H., Choi, C.H., Ylaya, K., Chung, J.Y., Kim, J.H., and Hewitt, S.M. (2015). Clinical significance of OCT4 and SOX2 protein expression in cervical cancer. BMCCancer15, 1015.

Kim, J., Yao, F., Xiao, Z., Sun, Y., and Ma, L. (2018). MicroRNAs and metastasis: small RNAsplay big roles. Cancer Metastasis Rev. 37, 5-15.

Konno, Y., Dong, P., Xiong, Y., Suzuki, F., Lu, J., Cai, M., Watari, H., Mitamura, T., Hosaka, M., Hanley, S.J., et al. (2014). MicroRNA-101 targets EZH2, MCL-1 and FOS tosuppressproliferation, invasion and stem cell-like phenotype of aggressive endometrial cancer cells. Oncotarget. 5, 6049-6062.

Kyo, S., Nakamura, M., Kiyono, T., Maida, Y., Kanaya, T., Tanaka, M., Yatabe, N., andInoue, M. (2003). Successful immortalization of endometrial glandular cells with normal structural and functional characteristics. Am. J. Pathol. 163, 2259-2269.

Lánczky, A., and Győrffy, B. (2021). Web-Based Survival Analysis Tool Tailored for Medical Research (KMplot): Development and Implementation. J. Med. Internet Res. 23, e27633.

Lee, W.S., Kim, N., Park, Y.R., Oh, H.H., Myung, E., Kim, S.H., Yu, H.M., Kim, M.Y., Oak, C.Y., Chung, C.Y., et al. (2015). Myeloid cell leukemia-1 promotes epithelial-mesenchymal transition of human gastric cancer cells. Oncol. Rep. 34, 1011-1016. Lee, H.W., and Kim, K.M. (2019). Clinical significance of heat shock protein 90α expressionas a biomarker of prognosis in patients with gastric cancer. Niger. J. Clin. Pract. 22, 1698-1705.

Li, Y., Zhang, T., Schwartz, S.J., and Sun, D. (2009). New developments in Hsp90 inhibitorsasanti-cancer therapeutics: mechanisms, clinical perspective and more potential. DrugResist. Updat. 12, 17-27.

Li, C.H., and Chen, Y. (2013). Targeting long non-coding RNAs in cancers: progress andprospects. Int. J. Biochem. Cell Biol. 45, 1895-1910.

Li, J.H., Liu, S., Zhou, H., Qu, L.H., and Yang, J.H. (2014). starBase v2.0: decodingmiRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks fromlarge-scaleCLIP-Seq data. Nucleic Acids Res. 42, D92-97.

Li, H., Wu, X., and Cheng, X. (2016). Advances in diagnosis and treatment of metastaticcervical cancer. J. Gynecol. Oncol. 27, e43.

Li, Y., Chen, Y., Li, J., Zhang, Z., Huang, C., Lian, G., Yang, K., Chen, S., Lin, Y., Wang, L., et al. (2017). Co-delivery of microRNA-21 antisense oligonucleotides and gemcitabineusingnanomedicine for pancreatic cancer therapy. Cancer Sci. 108, 1493-1503.

Li, Z., Joehlin-Price, A.S., Rhoades, J., Ayoola-Adeola, M., Miller, K., Parwani, A.V., Backes, F.J., Felix, A.S., and Suarez, A.A. (2018a). Programmed Death Ligand 1 ExpressionAmong700 Consecutive Endometrial Cancers: Strong Association With Mismatch Repair ProteinDeficiency. Int. J. Gynecol. Cancer. 28, 59-68

Li, X., Wang, X., Song, W., Xu, H., Huang, R., Wang, Y., Zhao, W., Xiao, Z., and Yang, X. (2018b). Oncogenic Properties of NEAT1 in Prostate Cancer Cells DependontheCDC5L-AGRN Transcriptional Regulation Circuit. Cancer Res. 78, 4138-4149.

Li, J., Jiang, X., Li, C., Liu, Y., Kang, P., Zhong, X., and Cui, Y. (2019). LncRNA-MEG3 inhibits cell proliferation and invasion by modulating Bmi1/RNF2 in cholangiocarcinoma. J. Cell. Physiol. 234, 22947-22959.

Li, M., Ding, X., Zhang, Y., Li, X., Zhou, H., Yang, L., Li, Y., Yang, P., Zhang, X., Hu, J., et al. (2020). Antisense oligonucleotides targeting lncRNA AC104041.1 induces antitumor activitythrough Wnt2B/β-catenin pathway in head and neck squamous cell carcinomas. Cell DeathDis. 11, 672.

Lin, P., Yi, Y., Lu, M., Wang, M., Yang, Y., Lu, Y., Song, S., Zheng, Z., Deng, X., and Zhang, L. (2015). Heat shock protein 90 inhibitor mycoepoxydiene modulates kinase signalingincervical cancer cells and inhibits in-vivo tumor growth. Anticancer Drugs. 26, 25-34.

Lipson, E.J., Vincent, J.G., Loyo, M., Kagohara, L.T., Luber, B.S., Wang, H., Xu, H., Nayar, S.K., Wang, T.S., Sidransky, D., et al. (2013). PD-L1 expression in the Merkel cell carcinomamicroenvironment: association with inflammation, Merkel cell polyomavirus andoverall survival. Cancer Immunol. Res. 1, 54-63.

Liu, J., Liu, Y., Wang, W., Wang, C., and Che, Y. (2015). Expression of immune checkpoint molecules in endometrial carcinoma. Exp. Ther. Med. 10, 1947-1952.

Liu, H., Pan, Y., Han, X., Liu, J., and Li, R. (2017). MicroRNA-216a promotes the metastasisand epithelial-mesenchymal transition of ovarian cancer by suppressing the PTEN/AKTpathway. Onco Targets Ther. 10, 2701-2709.

Liu, X., Qiao, B., Zhao, T., Hu, F., Lam, A.K., and Tao, Q. (2018). Sox2 promotes tumoraggressiveness and epithelial mesenchymal transition in tongue squamous cell carcinoma. Int. J. Mol. Med. 42, 1418-1426.

Liu, S., Qin, T., Jia, Y., and Li, K. (2019). PD-L1 Expression Is Associated With VEGFAandLADC Patients' Survival. Front. Oncol. 9, 189.

Liu, S.J., Dang, H.X., Lim, D.A., Feng, F.Y., and Maher, C.A. (2021). Long noncodingRNAsin cancer metastasis. Nat. Rev. Cancer. 21, 446-460.

Ma, L., Wang, F., Du, C., Zhang, Z., Guo, H., Xie, X., Gao, H., Zhuang, Y., Kornmann, M., Gao, H., et al. (2018). Long non-coding RNA MEG3 functions as a tumour suppressor andhasprognostic predictive value in human pancreatic cancer. Oncol. Rep. 39, 1132-1140.

Marinelli, O., Annibali, D., Aguzzi, C., Tuyaerts, S., Amant, F., Morelli, M.B., Santoni, G., Amantini, C., Maggi, F., and Nabissi, M. (2019). The Controversial Role of PD-1andItsLigands in Gynecological Malignancies. Front. Oncol. 9, 1073.

Miyata, Y., Nakamoto, H., and Neckers, L. (2013). The therapeutic target Hsp90 andcancerhallmarks. Curr. Pharm. Des. 19, 347-365.

Mo, Z., Liu, J., Zhang, Q., Chen, Z., Mei, J., Liu, L., Yang, S., Li, H., Zhou, L., andYou, Z. (2016). Expression of PD-1, PD-L1 and PD-L2 is associated with differentiation statusandhistological type of endometrial cancer. Oncol. Lett. 12, 944-950.

Mo, C., Huang, B., Zhuang, J., Jiang, S., Guo, S., and Mao, X. (2021). LncRNAnuclear-enriched abundant transcript 1 shuttled by prostate cancer cells-secreted exosomesinitiates osteoblastic phenotypes in the bone metastatic microenvironment viamiR-205-5p/runt-related transcription factor 2/splicing factor proline- andglutamine-rich/polypyrimidine tract-binding protein 2 axis. Clin. Transl. Med. 11, e493

Nagaraju, G.P., Long, T.E., Park, W., Landry, J.C., Taliaferro-Smith, L., Farris, A.B., Diaz, R., and El-Rayes, B.F. (2015). Heat shock protein 90 promotes epithelial to mesenchymal transition, invasion, and migration in colorectal cancer. Mol. Carcinog. 54, 1147-1158

Okazaki, T., and Honjo, T. (2007). PD-1 and PD-1 ligands: from discovery toclinical application. Int. Immunol. 19, 813-824.

Palaz, F., Kalkan, A.K., Can, Ö., Demir, A.N., Tozluyurt, A., Özcan, A., and Ozsoz, M. (2021). CRISPR-Cas13 System as a Promising and Versatile Tool for Cancer Diagnosis, Therapy, andResearch. ACS Synth. Biol. 10, 1245-1267.

Pan, C.Y., and Lin, W.C. (2020). miR-TV: an interactive microRNA Target Viewer formicroRNA and target gene expression interrogation for human cancer studies. Database(Oxford). 2020, baz148.

Paraskevopoulou, M.D., Vlachos, I.S., Karagkouni, D., Georgakilas, G., Kanellos, I., Vergoulis, T., Zagganas, K., Tsanakas, P., Floros, E., Dalamagas, T., et al. (2016). DIANA-LncBasev2: indexing microRNA targets on non-coding transcripts. Nucleic Acids Res. 44, D231-238

Parasramka, M.A., Maji, S., Matsuda, A., Yan, I.K., and Patel, T. (2016). Long non-codingRNAs as novel targets for therapy in hepatocellular carcinoma. Pharmacol. Ther. 161, 67-78.

Pathania, A.S., and Challagundla, K.B. (2020). Exosomal Long Non-coding RNAs: EmergingPlayers in the Tumor Microenvironment. Mol. Ther. Nucleic Acids. 23, 1371-1383.

Pick, E., Kluger, Y., Giltnane, J.M., Moeder, C., Camp, R.L., Rimm, D.L., and Kluger, H.M. (2007). High HSP90 expression is associated with decreased survival in breast cancer. CancerRes. 67, 2932-2937.

Pisani, G., and Baron, B. (2020). NEAT1 and Paraspeckles in Cancer Development andChemoresistance. Noncoding RNA. 6, 43.

Postow, M.A., Callahan, M.K., and Wolchok, J.D. (2015). Immune Checkpoint BlockadeinCancer Therapy. J. Clin. Oncol. 33, 1974-1982.

Qi, Y., Lai, Y.L., Shen, P.C., Chen, F.H., Lin, L.J., Wu, H.H., Peng, P.H., Hsu, K.W., andCheng, W.C. (2020). Identification and validation of a miRNA-based prognostic signature for cervical cancer through an integrated bioinformatics approach. Sci. Rep. 10, 22270.

Qiu. X.Y., Hu, D.X., Chen, W.Q., Chen, R.Q., Qian, S.R., Li, C.Y., Xiong, X.X., Liu, D., Pan, F., Yu, S.B., et al. (2018). PD-L1 confers glioblastoma multiforme malignancy via Ras bindingand Ras/Erk/EMT activation. Biochim. Biophys. Acta Mol. Basis Dis. 1864, 1754-1769.

Rotman, M., Sedlis, A., Piedmonte, M.R., Bundy, B., Lentz, S.S., Muderspach, L.I., andZaino, R.J. (2006). A phase III randomized trial of postoperative pelvic irradiation in Stage IBcervical carcinoma with poor prognostic features: follow-up of a gynecologic oncology group study. Int J. Radiat. Oncol. Biol. Phys. 65, 169-176.

Samarnthai, N., Hall, K., and Yeh, I.T. (2010). Molecular profiling of endometrial malignancies. Obstet. Gynecol. Int. 2010, 162363.

Schwock, J., Pham, N.A., Cao, M.P., and Hedley, D.W. (2008). Efficacy of Hsp90 inhibitionfor induction of apoptosis and inhibition of growth in cervical carcinoma cells in vitroandinvivo. Cancer Chemother. Pharmacol. 61, 669-681.

Shibue, T., and Weinberg, R.A. (2017). EMT, CSCs, and drug resistance: the mechanisticlinkand clinical implications. Nat. Rev. Clin. Oncol. 14, 611-629.

Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., andBray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and MortalityWorldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 71, 209-249.

Tamai, K., Nakamura, M., Mizuma, M., Mochizuki, M., Yokoyama, M., Endo, H., Yamaguchi, K., Nakagawa, T., Shiina, M., Unno, M., et al. (2014). Suppressive expression of CD274increases tumorigenesis and cancer stem cell phenotypes in cholangiocarcinoma. Cancer Sci. 105, 667-674

Tang, Y., Nakada, M.T., Kesavan, P., McCabe, F., Millar, H., Rafferty, P., Bugelski, P., andYan, L. (2005). Extracellular matrix metalloproteinase inducer stimulates tumor angiogenesisbyelevating vascular endothelial cell growth factor and matrix metalloproteinases. Cancer Res. 65, 3193-3199.

Tang, Z,, Li, C., Kang, B., Gao, G., Li, C., and Zhang, Z. (2017). GEPIA: a web server forcancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 45, W98-W102.

Tao, Y., Zhou, J., Wang, Z., Tao, H., Bai, J., Ge, G., Li, W., Zhang, W., Hao, Y., Yang, X., et al. (2021). Human bone mesenchymal stem cells-derived exosomal miRNA-361-5p alleviatesosteoarthritis by downregulating DDX20 and inactivating the NF-κB signaling pathway. Bioorg. Chem. 113, 104978.

Taube, J.M., Anders, R.A., Young, G.D., Xu, H., Sharma, R., McMiller, T.L., Chen, S., Klein, A.P., Pardoll, D.M., Topalian, S.L., et al. (2012). Colocalization of inflammatory responsewithB7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanismofimmune escape. Sci. Transl. Med. 4, 127ra37.

Terry, S., Savagner, P., Ortiz-Cuaran, S., Mahjoubi, L., Saintigny, P., Thiery, J.P., andChouaib, S. (2017). New insights into the role of EMT in tumor immune escape. Mol. Oncol. 11, 824-846.

Tripathi, K., and Garg, M. (2018). Mechanistic regulation of epithelial-to-mesenchymal transition through RAS signaling pathway and therapeutic implications in human cancer. J. Cell Commun. Signal. 12, 513-527.

Tulake, W., Yuemaier, R., Sheng, L., Ru, M., Lidifu, D., and Abudula, A. (2018). Upregulationof stem cell markers ALDH1A1 and OCT4 as potential biomarkers for the early detectionofcervical carcinoma. Oncol. Lett. 16, 5525-5534.

Uhlen, M., Oksvold, P., Fagerberg, L., Lundberg, E., Jonasson, K., Forsberg, M., Zwahlen, M., Kampf, C., Wester, K., Hober, S., et al. (2010). Towards a knowledge-based HumanProteinAtlas. Nat. Biotechnol. 28, 1248-1250.

Uhlén, M., Fagerberg, L., Hallström, B.M., Lindskog, C., Oksvold, P., Mardinoglu, A., Sivertsson, Å., Kampf, C., Sjöstedt, E., Asplund, A., et al. (2015). Proteomics. Tissue-basedmap of the human proteome. Science. 347, 1260419.

Valastyan, S., and Weinberg, R.A. (2011). Tumor metastasis: molecular insights andevolvingparadigms. Cell. 147, 275-292.

Van Roosbroeck, K., and Calin, G.A. (2017). Cancer Hallmarks and MicroRNAs: TheTherapeutic Connection. Adv. Cancer Res. 135, 119-149.

Wang, X., Song, X., Zhuo, W., Fu, Y., Shi, H., Liang, Y., Tong, M., Chang, G., andLuo, Y. (2009). The regulatory mechanism of Hsp90alpha secretion and its function intumormalignancy. Proc. Natl. Acad. Sci. U. S. A. 106, 21288-21293.

Wang, L., and Zhu, H. (2018a). Long non coding nuclear paraspeckle assembly transcript 1acts as prognosis biomarker and increases cell growth and invasion in cervical cancer bysequestering microRNA 101. Mol. Med. Rep. 17, 2771-2777.

Wang, H.L., Hou, S.Y., Li, H.B., Qiu, J.P., Bo, L., and Mao, C.P. (2018b). Biological Functionand Mechanism of Long Noncoding RNAs Nuclear-Enriched Abundant Transcript 1inDevelopment of Cervical Cancer. Chin. Med. J. (Engl). 131, 2063-2070.

Wang, X., Yang, X., Zhang, C., Wang, Y., Cheng, T., Duan, L., Tong, Z., Tan, S., Zhang, H., Saw, P.E., et al. (2020a). Tumor cell-intrinsic PD-1 receptor is a tumor suppressor andmediatesresistance to PD-1 blockade therapy. Proc. Natl. Acad. Sci. U. S. A. 117, 6640-6650.

Wang, Q.A., Yang, Y., and Liang, X. (2020b). LncRNA CTBP1-AS2 sponges miR-216atoupregulate PTEN and suppress endometrial cancer cell invasion and migration. J. OvarianRes. 13, 37

Webster, R.J., Giles, K.M., Price, K.J., Zhang, P.M., Mattick, J.S., and Leedman, P.J. (2009). Regulation of epidermal growth factor receptor signaling in human cancer cellsbymicroRNA-7. J. Biol. Chem. 284, 5731-5741.

Welch, W.J., and Feramisco, J.R. (1982). Purification of the major mammalian heat shockproteins. J. Biol. Chem. 257, 14949-14959.

Wienholds, E., and Plasterk, R.H. (2005). MicroRNA function in animal development. FEBSLett. 579, 5911-5922.

Winkle, M., El-Daly, S.M., Fabbri, M., and Calin, G.A. (2021). Noncoding RNAtherapeutics-challenges and potential solutions. Nat. Rev. Drug Discov. 20, 629-651.

Wright, J.D., Chen, L., Tergas, A.I., Burke, W.M., Hou, J.Y., Neugut, A.I., Ananth, C.V., andHershman, D.L. (2015). Population-level trends in relative survival for cervical cancer. Am. J. Obstet. Gynecol. 213, 670.e1-7.

Wu, Y., Zhou, X., and Zheng, P.S. (2011). Involvement of CD147 isoform 4 in the proliferationof SiHa cells: a possible molecular mechanism of cervical cancer. Oncol. Rep. 26, 717-724.

Wu, X., Xi, X., Yan, Q., Zhang, Z., Cai, B., Lu, W., and Wan, X. (2013). MicroRNA-361-5pfacilitates cervical cancer progression through mediation of epithelial-to-mesenchymal transition. Med. Oncol. 30, 751.

Wu, Q., Ren, X., Zhang, Y., Fu, X., Li, Y., Peng, Y., Xiao, Q., Li, T., Ouyang, C., Hu, Y., et al. (2018). MiR-221-3p targets ARF4 and inhibits the proliferation and migration of epithelial ovarian cancer cells. Biochem. Biophys. Res. Commun. 497, 1162-1170.

Xia, H., Ooi, L.L., and Hui, K.M. (2013). MicroRNA-216a/217-inducedepithelial-mesenchymal transition targets PTEN and SMAD7 to promote drug resistanceandrecurrence of liver cancer. Hepatology. 58, 629-641.

Xiang, W., Yang, C.Y., and Bai, L. (2018). MCL-1 inhibition in cancer treatment. OncoTargets Ther. 11, 7301-7314.

Xiao, Y., and Liu, Y. (2020). Recent Advances in the Discovery of Novel HSP90 Inhibitors: AnUpdate from 2014. Curr. Drug Targets. 21, 302-317.

Xie, Q., Lin, S., Zheng, M., Cai, Q., and Tu, Y. (2019). Long noncoding RNANEAT1promotes the growth of cervical cancer cells via sponging miR-9-5p. Biochem. Cell Biol. 97, 100-108.

Xin, X., Zeng, X., Gu, H., Li, M., Tan, H., Jin, Z., Hua, T., Shi, R., and Wang, H. (2016). CD147/EMMPRIN overexpression and prognosis in cancer: A systematic reviewandmeta-analysis. Sci. Rep. 6, 32804.

Xu, Q., Ying, M., Chen, G., Lin, A., Xie, Y., Ohara, N., and Zhou, D. (2014). ADAM17isassociated with EMMPRIN and predicts poor prognosis in patients with uterine cervical carcinoma. Tumour Biol. 35, 7575-7586.

Xu, D., Dong, P., Xiong, Y., Yue, J., Ihira, K., Konno, Y., Kobayashi, N., Todo, Y., andWatari, H. (2019). MicroRNA-361: A Multifaceted Player Regulating Tumor Aggressiveness andTumor Microenvironment Formation. Cancers (Basel). 11, 1130.

Xu, D., Dong, P., Xiong, Y., Yue, J., Konno, Y., Ihira, K., Kobayashi, N., Todo, Y., andWatari, H. (2020). MicroRNA-361-Mediated Inhibition of HSP90 Expression and EMTinCervical Cancer Is Counteracted by Oncogenic lncRNA NEAT1. Cells. 9, 632.

Yamagami, W., Nagase, S., Takahashi, F., Ino, K., Hachisuga, T., Aoki, D., and Katabuchi, H. (2017). Clinical statistics of gynecologic cancers in Japan. J. Gynecol. Oncol. 28, e32.

Yamashita, H., Nakayama, K., Ishikawa, M., Nakamura, K., Ishibashi, T., Sanuki, K., Ono, R., Sasamori, H., Minamoto, T., Iida, K., et al. (2017). Microsatellite instability is a biomarker forimmune checkpoint inhibitors in endometrial cancer. Oncotarget. 9, 5652-5664.

Yang, Z., Wu, L., Wang, A., Tang, W., Zhao, Y., Zhao, H., and Teschendorff, A.E. (2017). dbDEMC 2.0: updated database of differentially expressed miRNAs in human cancers. NucleicAcids Res. 45, D812-D818.

Yang, D., and Zhang, Q. (2019). miR-152 may function as an early diagnostic and prognosticbiomarker in patients with cervical intraepithelial neoplasia and patients with cervical cancer. Oncol. Lett. 17, 5693-5698.

Yang, W., and Xie, T. (2020). Hsa_circ_CSPP1/MiR-361-5p/ITGB1 Regulates Proliferationand Migration of Cervical Cancer (CC) by Modulating the PI3K-Akt Signaling Pathway. Reprod. Sci. 27, 132-144.

Yoo, B., Jordan, V.C., Sheedy, P., Billig, A.M., Ross, A., Pantazopoulos, P., and Medarova, Z. (2019). RNAi-Mediated PD-L1 Inhibition for Pancreatic Cancer Immunotherapy. Sci. Rep. 9, 4712.

Yuan, L.Y., Zhou, M., Lv, H., Qin, X., Zhou, J., Mao, X., Li, X., Xu, Y., Liu, Y., andXing, H. (2019). Involvement of NEAT1/miR-133a axis in promoting cervical cancer progressionviatargeting SOX4. J. Cell. Physiol. 234, 18985-18993.

Zagouri, F., Sergentanis, T.N., Nonni, A., Papadimitriou, C.A., Michalopoulos, N.V., Domeyer, P., Theodoropoulos, G., Lazaris, A., Patsouris, E., Zogafos, E., et al. (2010). Hsp90inthecontinuum of breast ductal carcinogenesis: Evaluation in precursors, preinvasive andductal carcinoma lesions. BMC Cancer. 10, 353.

Zhang, J., Liu, J., Zhu, C., He, J., Chen, J., Liang, Y., Yang, F., Wu, X., and Ma, X. (2017a). Prognostic role of vascular endothelial growth factor in cervical cancer: a meta-analysis. Oncotarget. 8, 24797-24803.

Zhang, D., Zhao, L., Shen, Q., Lv, Q., Jin, M., Ma, H., Nie, X., Zheng, X., Huang, S., Zhou, P., et al. (2017b). Down-regulation of KIAA1199/CEMIP by miR-216a suppresses tumor invasion and metastasis in colorectal cancer. Int. J, Cancer. 140, 2298-2309.

Zhang, S., Guo, S., Li, Z., Li, D., and Zhan, Q. (2019). High expression of HSP90 is associatedwith poor prognosis in patients with colorectal cancer. PeerJ. 7, e7946.

Zhang, S., Minaguchi, T., Xu, C., Qi, N., Itagaki, H., Shikama, A., Tasaka, N., Akiyama, A., Sakurai, M., Ochi, H., et al. (2020). PD-L1 and CD4 are independent prognostic factorsforoverall survival in endometrial carcinomas. BMC Cancer. 20, 127.

Zhao, E.F., Bao, L., Liang, L., and Li, D. (2006). (Expressions of heat shock protein incervical cancer and precancerosis). Zhongguo Ying Yong Sheng Li Xue Za Zhi. 22, 250-253.

Zhao, Y.Q., Liu, X.B., Xu, H., Liu, S., and Wang, J.M. (2019). MEG3 inhibits cell proliferation, invasion and epithelial-mesenchymal transition in laryngeal squamous cell carcinoma. Eur. Rev. Med. Pharmacol. Sci. 23, 2062-2068.

Zhen, S., and Li, X. (2019). Application of CRISPR-Cas9 for Long Noncoding RNAGenesinCancer Research. Hum. Gene Ther. 30, 3-9.

Zhou, C., Li, G., Zhou, J., Han, N., Liu, Z., and Yin, J. (2014). miR-107 activates ATR/Chk1pathway and suppress cervical cancer invasion by targeting MCL1. PLoS One. 9, e111860.

参考文献をもっと見る