リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Nature of chemical bonds in double perovskite-type oxide BaBiO3 and related oxides visualized by synchrotron-radiation X-ray diffraction」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Nature of chemical bonds in double perovskite-type oxide BaBiO3 and related oxides visualized by synchrotron-radiation X-ray diffraction

Zhao Qing 広島大学

2020.09.04

概要

1.1 Perovskite-type structure
Perovskite-type structure materials are widely found in nature and firstly get its
name from a mineral with the formula CaTiO3. Generally, the chemical formula of
perovskite can be described with formula ABX3. The A-site is usually occupied by the
alkaline or alkaline earth ions with larger ions radii, and the B-site is usually occupied
by the transition metal ions with smaller ions radii, and the X sites are usually oxygen
ions or halide ions.[1-4] Geometrically, the standard ideal crystal structure of
perovskite is expected to be cubic symmetry with the Pm3m space group as shown in
Fig. 1-1. A-site ions locate at the eight vertices of the cubic cell, and the X site ions
locate at the center of each of the six faces to form an oxygen octahedron, while B site
ions occupy the center of the oxygen octahedron. The A-site is surrounded by twelve
oxygen ions. In cubic Pm3m symmetry, the position of the A sites is (0, 0, 0), the
position of the B sites is (1/2, 1/2, 1/2), and the position of the X sites is (1/2, 1/2, 0). ...

この論文で使われている画像

参考文献

[1] B. Martínez, X. Obradors, A. Gou, V. Gomis, S. Piñol, J. Fontcuberta, and H. Van

Tol, Phy. Rev. B 53 (1996) 2797.

[2] Y. Long and Y. Shimakawa, New J. Phys. 12 (2010) 1906.

[3] J. Blasco, J. García, J. M. de Teresa, M. R. Ibarra, J. Perez, P. A. Algarabel, C.

Marquina, and C. Ritter, Phys. Rev. B 55 (1997) 8905.

[4] W. T. Chen, Y. Long, T. Saito, J. Paul Attfield, and Y. Shimakawa, J. mater. Chem.

20 (2010) 7282.

[5] R. Shannon, Acta Crystallogr., Sec. A 32 (1976) 751.

[6] A. V. Hippel, R. G. Breckenridge, F. G. Chesley, and L. Tisza, Ind. Eng. Chem. 38

(1946) 1097.

[7] B. Wul and I. M. Goldman, C. R. Acad. Sci. USSR 51 (1946) 21.

[8] S. A. Hayward, S. A. T. Redfern, and E. K. H. Salje, J. Phys.: Condens. Mat. 14

(2002) 10131.

[9] G. King and P. M. Woodward, J. Mater. Chem. 20 (2010) 5785.

[10] T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima and Y. Tokura, Nature 426

(2003) 55

[11] M. B. Salamon and M. Jaime, Rev. Mod. Phys. 73 (2001), 583.

[12] Y. Krockenberger, K. Mogare, M. Reehuis, M. Tovar, M. Jansen, G.

Vaitheeswaran, V. Kanchana, F. Bultmark, A. Delin, F. Wilhelm, A. Rogalev, A.

Winkler and L. Alff, Phys. Rev. B 75 (2007) 020404.

[13] T. Alamelu, U. V. Varadaraju, M. Venkatesan, A. P. Douvalis and J. M. D. Coey, J.

Appl. Phys. 91 (2002) 8909.

[14] H. Kato, T. Okuda, Y. Okimoto, Y. Tomioka, Y. Takenoya, A. Ohkubo, M.

Kawasaki and Y. Tokura, Appl. Phys. Lett. 81 (2002) 328.

[15] Y. Tokura, K. I. Kobayashi, T. Kimura, H. Sawada and K. Terakura, Nature 395

(1998) 677.

[16] Y. Tomioka, T. Okuda, Y. Okimoto, R. Kumai, K. I. Kobayashi and Y. Tokura,

Phys. Rev. B 61 (2000) 422.

88

[17] D. Serrate, J. M. De Teresa and M. R. Ibarra, J. Phys.: Condens. Mat. 19 (2007)

023201.

[18] A. K. Paul, M. Jansen, B. Yan, C. Felser, M. Reehuis and P. M. Abdala, Inorg.

Chem. 52 (2013) 6713.

[19] H. L. Feng, M. Arai, Y. Matsushita, Y. Tsujimoto, Y. Guo, C. I. Sathish, X. Wang,

Y. Yuan, M. Tanaka and K. Yamaura, J. Am. Chem. Soc. 136 (2014), 3326.

[20] R. Morrow, J. W. Freeland and P. M. Woodward, Inorg. Chem. 53 (2014) 7983.

[21] A. K. Paul, M. Reehuis, V. Ksenofontov, B. Yan, A. Hoser, D. M. Tobbens, P. M.

Abdala, P. Adler, M. Jansen and C. Felser, Phys. Rev. Lett. 111 (2013) 167205.

[22] Y. S. Hou, H. J. Xiang and X. G. Gong, Sci. Rep. 5 (2015) 13159.

[23] S. V. Ovsyannikov, M. Bykov, E. Bykova, D. P. Kozlenko, A. A. Tsirlin, A. E.

Karkin, V. V. Shchennikov, S. E. Kichanov, H. Y. Gou, A. M. Abakumov, R. Egoavil,

J. Verbeeck, C. McCammon, V. Dyadkin, D. Chernyshov, S. van Smaalen and L. S.

Dubrovinsky, Nature Chem. 8 (2016) 501.

[24] B. Lavina, P. Dera, E. Kim, Y. Meng, R.T. Downs, P. Weck, S.R. Sutton and Y.

Zhao, Proc. Natl. Acad. Sci. USA. 108 (2011) 17281.

[25] Y. W. Long, N. Hayashi, T. Saito, M. Azuma, S. Muranaka and Y. Shimakawa,

Nature 458 (2009) 60.

[26] Y. W. Long, T. Kawakami, W. T. Chen, T. Saito, T. Watanuki, Y. Nakakura, Q. Q.

Liu, C. Q. Jin and Y. Shimakawa, Chem. Mater. 24 (2012) 2235.

[27] T. Mizokawa and A. Fujimori, Phys. Rev. B 56 (1997) R493.

[28] D. H. Kim, H. M. Christen, M. Varela, H. N. Lee and D. H. Lowndes, Appl. Phys.

Lett. 88 (2006) 202503.

[29] J. Fontcuberta, V. Laukhin and X. Obradors, Phys. Rev. B 60 (1999) 6266.

[30] S. Aoyagi, PhD thesis, Okayama University, 2002 [in Japanese].

[31] T. Nakamura, Ferroelectricity involved Structural Phase Transitions (Shokabo,

Tokyo, 1988) [in Japanese].

[32] J. Harada, J. Cryst. Soc. Jpn 20, 1 (1978) [in Japanese].

[33] W. Zhong and D. Vanderbilt, Phys. Rev. Lett. 74 (1995) 2587.

[34] G. Pavel and J. B. Andrew, J. Phys.: Condens. Mat. 19 (2007) 176201.

89

[35] A. Glazer, Acta Crystallogr., Sec. B 28 (1972) 3384.

[36] P. Woodward, Acta Crystallogr., Sec. B 53 (1997) 32.

[37] M. E. Jones and R. E. Marsh, J. Am. Chem. Soc. 76 (1954) 1434.

[38] E. Nishibori, M. Takata, M. Sakata, H. Tanaka, T. Muranaka and J. Akimitsu, J.

Phys. Soc. Jpn 70 (2001) 2252.

[39] K. Kato, M. Takata, Y. Moritomo, A. Nakamoto and N. Kojima, Appl. Phys. Lett.

90 (2007) 201902.

[40] Y. Kuroiwa, S. Aoyagi, A. Sawada, J. Harada, E. Nishibori, M. Takata and M.

Sakata, Phys. Rev. Lett. 87 (2001) 217601.

[41] H. Tanaka, Y. Kuroiwa and M. Takata, Phys. Rev. B 74 (2006) 172105.

[42] P. Maselli, D. Nicoletti, A. Nucara, F. M. Vitucci, A. Irizawa, K. Shoji, T. Nanba

and P. Calvani, EPL (Europhysics Letters) 92 (2010) 47001.

[43] K. Kato, M. Takata, E. Nishibori, M. Sakata, N. Hamada and Y. Moritomo, J.

Phys. Soc. Jpn. 74 (2005) 2137.

[44] A. W. Sleight, J. L. Gillson and P. E. Bierstedt, Solid State Commun. 88 (1993)

841.

[45] R. J. Cava, B. Batlogg, J. J. Krajewski, R. Farrow, L. W. Rupp Jr, A. E. White, K.

Short, W. F. Peck and T. Kometani, Nature 332 (1988) 814.

[46] D. G. Hinks, B. Dabrowski, J. D. Jorgensen, A. W. Mitchell, D. R. Richards, S.

Pei and D. Shi, Nature 333 (1988) 836.

[47] S. M. Kazakov, C. Chaillout, P. Bordet, J. J. Capponi, M. Nunez-Regueiro, A.

Rysak, J. L. Tholence, P. G. Radaelli, S. N. Putilin and E. V. Antipov, Nature 390

(1997) 148.

[48] A. M. Huerta-Flores, D. Sanchez-Martinez, M. del Rocío Hernández-Romero, M.

E. Zarazúa-Morín and L. M. Torres-Martínez, J. Photoch. Photobio. A 368 (2019) 70.

[49] J. Tang, Z. Zou and J. Ye, J. Phys. Chem. C 111 (2007) 12779.

[50] M. Khraisheh, A. Khazndar and M.A. Al-Ghouti, Int. J. Energy Res. 39 (2015)

1142.

[51] J. Tang, Z. Zou and J. Ye, Angew. Chem., Int. Ed. 43 (2004) 4463.

[52] J. Sato, H. Kobayashi and Y. Inoue, J. Phys. Chem. B 107 (2003) 7970.

90

[53] A. W. Sleight, Physica C 514 (2015) 152.

[54] M. Yasukawa and N. Murayama, Physica C 297 (1998) 326.

[55] A. Ghosh, Solid State Commun. 112 (1999) 45.

[56] S. H. Lee, W. H. Jung, J. H. Sohn, J. H. Lee and S. H. Cho, J. Appl. Phys. 86

(1999) 6351.

[57] D. E. Cox and A. W. Sleight, Solid State Commun. 19 (1976) 969.

[58] Q. Zhou and B. J. Kennedy, Solid State Commun. 132 (2004) 389.

[59] B. J. Kennedy, C. J. Howard, K. S. Knight, Z. Zhang and Q. Zhou, Acta Cryst. B

62 (2006) 537.

[60] S. Pei, J. D. Jorgensen, B. Dabrowski, D. G. Hinks, D. R. Richards, A. W.

Mitchell, J. M. Newam, S. K. Shiha, D. Vaknin and A. J. Jacobson, Phys. Rev. B 41

(1990) 4126.

[61] H. Krakauer and W. E. Pickett, Phys. Rev. Lett. 60 (1988) 1665.

[62] S. Sanna, V. Esposito, J. W. Andreasen, J. Hjelm, W. Zhang, T. Kasama, S. B.

Simonsen, M. Christensen, S. Linderoth and N. Pryds, Nat. Mater. 14 (2015) 500.

[63] H. Taniguchi, A. Kuwabara, J. Kim, Y. Kim, H. Moriwake, S. Kim, T. Hoshiyama,

T. Koyama, S. Mori, M. Takata, H. Hosono, Y. Inaguma and M. Itoh, Angew. Chem.

Int. Ed. 52 (2013) 8088.

[64] G. Catalan and J. F. Scott, Adv. Mater. 21 (2009) 2463.

[65] Y. Hosaka, F. Denis Romero, N. Ichikawa, T. Saito and Y. Shimakawa, Angew.

Chem. Int. Ed. 56 (2017) 4243.

[66] I. D. Brown, Chem. Rev. 109 (2009) 6858.

[67] H.-T. Sun, J. Zhou and J. Qiu, Prog. Mater. Sci. 64 (2014) 1.

[68] Z. Huang, J. E. Auckett, P. E. Blanchard, B. J. Kennedy, W. Miiller, Q. Zhou, M.

Avdeev, M. R. Johnson, M. Zbiri, G. Garbarino, W. G. Marshall, Q. Gu, C. D. Ling,

Angew. Chem. Int. Ed. 53 (2014) 3414.

[69] D. E. Cox and A. W. Sleight, Solid State Commun. 19 (1976) 969.

[70] G. Kim, M. Neumann, M. Kim, M. D. Le, T. D. Kang and T. W. Noh, Phys. Rev.

Lett. 115 (2015) 226402.

[71] N. C. Plumb, D. J. Gawryluk, Y. Wang, Z. Ristic, J. Park, B. Q. Lv, Z. Wang, C. E.

91

Matt, N. Xu, T. Shang, K. Conder, J. Mesot, S. Johnston, M. Shi and M. Radovic,

Phys. Rev. Lett. 117 (2016) 037002.

[72] M. A. Hayward, M. A. Green, M. J. Rosseinsky and J. Sloan, J. Am. Chem. Soc.

121 (1999) 8843.

[73] M. A. Hayward, E. J. Cussen, J. B. Claridge, M. Bieringer, M. J. Rosseinsky, C. J.

Kiely, S. J. Blundell, I. M. Marshall and F. L. Pratt, Science 295 (2002) 1882-1884.

[74] Y. Tsujimoto, C. Tassel, N. Hayashi, T. Watanabe, H. Kageyama, K. Yoshimura,

M. Takano, M. Ceretti, C. Ritter and W. Paulus, Nature 450 (2007) 1062.

[75] H. Kageyama, T. Watanabe, Y. Tsujimoto, A. Kitada, Y. Sumida, K. Kanamori, K.

Yoshimura, N. Hayashi, S. Muranaka, M. Takano, M. Ceretti, W. Paulus, C. Ritter and

G. Andre, Angew. Chem. Int. Ed. 47 (2008) 5740.

[76] S. Tominaka, Y. Tsujimoto, Y. Matsushita and K. Yamaura, Angew. Chem. Int. Ed.

50 (2011) 7418.

[77] a) G. K. Behrh, H. Serier-Brault, S. Jobic and R. Gautier, Angew. Chem. Int. Ed.

54 (2015) 11501; b) H. Barroux, T. Jiang, C. Paul, F. Massuyeau, R. Génois, E. E.

Gordon, M.-H. Whangbo, S. Jobic and R. Gautier, Chem. Eur. J. 23 (2017) 2998.

[78] a) B. M. Liu, Z. G. Zhang, K. Zhang, Y. Kuroiwa, C. Moriyoshi, H. M. Yu, C. Li,

L. R. Zheng, L. N. Li, G. Yang, Y. Zhou, Y. Z. Fang, J. S. Hou, Y. Matsushita and H.-T.

Sun, Angew. Chem. Int. Ed. 55 (2016) 4967; b) K. Zhang, C.-G. Ma, J.-Y. Zhang,

B.-M. Liu, Y. Zhou, S.-Q. Guo, J.-Y. Xu, J.-S. Hou, Y.-Z. Fang, L.-R. Zheng and H.-T.

Sun, Adv. Optical Mater. 5 (2017) 1700448.

[79] S. Inoue, M. Kawai, N. Ichikawa, H. Kageyama, W. Paulus and Y. Shimakawa,

Nat. Chem. 2 (2010) 213.

[80] H. S. Kim, J. B. Cook, H. Lin, J. S. Ko, S. H. Tolbert, V. Ozolins and B. Dunn,

Nat. Mater. 16 (2017) 454.

[81] F. Lei, Y. Sun, K. Liu, S. Gao, L. Liang, B. Pan and Y. Xie, J. Am. Chem. Soc.

136 (2014) 6826.

[82] L. Tian, H. Zou, J. Fu, X. Yang, Y. Wang, H. Guo, X. Fu, C. Liang, M. Wu, P. K.

Shen and Q. Gao, Adv. Func. Mater. 20 (2010) 617.

[83] P. Willmott, An Introduction to Synchrotron Radiation (Wiley, West Sussex,

92

2011).

[84] Outline Schematic view of beamline at source and optics of BL02B2

http://www.spring8.or.jp/wkg/BL02B2/instrument/lang-en/INS-0000000318/instrume

nt_summary_view

[85] E. Nishibori, M. Takata, K. Kato, M. Sakata, Y. Kubota, S. Aoyagi, Y. Kuroiwa,

M. Yamakata and N. Ikeda, Nucl. Instr. Meth. Phys. Res. A 62 (2001) 2095.

[86] S. Kawaguchi, M. Takemoto, K. Osaka, E. Nishibori, C. Moriyoshi, Y. Kubota, Y.

Kuroiwa and K. Sugimoto, Rev. Sci. Instrum. 88 (2017) 085111.

[87] H. Tanaka, M. Takata, E. Nishibori, K. Kato, T. Iishi and M. Sakata, J. Appl.

Crystallogr. 35 (2002) 282.

[88] K. Momma and F. Izumi, J. Appl. Crystallogr. 41 (2008) 653.

[89] B. Ravel and M. Newville, J. Synchrotron Radiat. 12 (2005) 537.

[90] G. Kresse and J. Furthmuller, Phys. Rev. B 54 (1996) 11169.

[91] J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.

[92] J. Heyd, G. E. Scuseria and M. Ernzerhof, J. Chem. Phys. 124 (2006) 219906.

[93] H. Rietveld, J. Appl. Crystallogr. 2 (1969) 65.

[94] C. E. Shannon, Bell Syst. Tech. J. 27 (1948) 408.

[95] E. E. Jaynes, IEEE Trans. Syst. Sci. Cyb. SSC 4 (1968) 227.

[96] J. P. Burg, 37th Ann. Int. Meeting, “Soc. Explor. Geophys.” Oklahoma City, OK,

1967

[97] D. M. Collins, Nature (London) 298 (1982) 49.

[98] M. Sakata, R. Mori, S. Kumazawa, M. Takata and H. Toraya, J. Appl. Cryst. 23

(1990) 526.

[99] M. Sakata and M. Sato, Acta Crystallogr., Sec. A 46 (1990) 263.

[100] T. Saka and N. Kato, Acta Crystallogr., Sec. A 42 (1986) 469.

[101] M. Takata, Acta Crystallogr., Sec. A 64 (2008) 232.

[102] F. Mezzadri, D. Delmonte, F. Orlandi, C. Pernechele, G. Calestani, M. Solzi, M.

Lantieri, G. Spina, R. Cabassi, F. Bolzoni, M. Fittipaldi, M. Merlini, A. Migliori, P.

Manuel and E. Gilioli, J. Mater. Chem. C 4 (2016) 1533.

[103] S. J. Patwe, S. N. Achary, M. D. Mathews and A. K. Tyagi, J. Alloys Compd.

93

390 (2005) 100.

[104] I. D. Brown, Chem. Rev. 109 (2009) 6858.

[105] E. R. Dohner, A. Jaffe, L. R. Bradshaw and H. I. Karunadasa, J. Am. Chem. Soc.

136 (2014) 13154.

[106] a) T. Hu, M. D. Smith, E. R. Dohner, M. J. Sher, X. Wu, M. T. Trinh, A. Fisher,

J. Corbett, X. Y. Zhu, H. I. Karunadasa and A. M. Lindenberg, J. Phys. Chem. Lett. 7

(2016) 2258; b) D. B. Mitzi, Chem. Mater. 8 (1996) 791; c) K. M. McCall, C. C.

Stoumpos, S. S. Kostina, M. G. Kanatzidis and B. W. Wessels, Chem. Mater. 29 (2017)

4129.

[107] a) Y. Fujimoto and M. Nakatsuka, Jpn. J. Appl. Phys. 40 (2001) L279; b) E. M.

Dianov, Light: Sci. Appl. 1 (2012) e12; c) H.-T. Sun, Y. Sakka, H. Gao, Y. Miwa, M.

Fujii, N. Shirahata, Z. Bai and J.-G. Li, J. Mater. Chem. 21 (2011) 4060; d) H.-T. Sun,

Y. Matsushita, Y. Sakka, N. Shirahata, M. Tanaka, Y. Katsuya, H. Gao and K.

Kobayashi, J. Am. Chem. Soc. 134 (2012) 2918; e) B. Xu, S. Zhou, D. Tan, Z. Hong,

J. Hao and J. Qiu, J. Appl. Phys. 113 (2013) 083503; f) L. S. Chi, R. S. Liu and B. J.

Lee, J. Electrochem. Soc. 152 (2005) J93.

94

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る