リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Characteristics of Escherichia coli isolated from livestock and related materials in the Philippines」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Characteristics of Escherichia coli isolated from livestock and related materials in the Philippines

BELOTINDOS, Lawrence Pascual 北海道大学

2021.09.24

概要

Antimicrobial resistance (AMR) is defined as the ability of microbes, such as bacteria, viruses, parasites or fungi to grow despite the presence of antimicrobials that would normally kill them. The development of drug resistance can be due to the inherent resistant characteristics of microorganisms or through the acquisition of genes from other organisms that can be passed both horizontally and vertically to their progeny [1]. However, AMR development was aggravated by many human factors largely through the misuse and abuse of antibiotics leading to the loss of antimicrobial efficacy and the spread of drug resistant pathogens in the community [2].

AMR is a serious concern in public and animal health, and the emergence of multipleantibiotic-resistant bacteria constitutes a global problem that needs to be addressed [3]. Livestock are considered as one of the major natural reservoirs for AMR. Antimicrobialresistant microorganisms in livestock may transfer their AMR genes to humans microflora via food animals and environmental contact [4] [5–7]. Additionally, foodborne diseases associated with food-producing animals are an important issue in developing countries where poor sanitation is maintained during collection and processing [8,9] and empirical treatment were common that could promote AMR development.

Major foodborne pathogens of great concern around the globe that causes outbreaks were Salmonella, Campylobacter and Escherichia coli [10]. According to WHO report, the estimated burden of foodborne diseases caused by 31 agents (bacteria, viruses, parasites, toxins and chemicals) each year was as many as 600 million, or almost 1 in 10 people in the world, fall ill after consuming contaminated food. Of these, 420,000 people die, including 125,000 children under the age of 5 years. The South-East Asia Region has the second highest burden of foodborne diseases per population, after the African Region. However, in terms of absolute numbers, more people fall ill and die from foodborne diseases every year than in any other WHO Region, with more than 150 million cases and 175,000 deaths in a year [4].

Documented foodborne disease outbreaks in the Philippines were caused by Salmonella, Vibrio, Aeromonas and E. coli. The top three food vehicles were meat-based dishes and processed meat products, fish and other sea dishes and bakery and confectionary products. According to the study, majority of morbidity cases were shown to be mainly outbreaks occurring outside the home, particularly in workplaces and schools [11]. Major contributory factors to the occurrence of outbreaks were improper storage temperature and poor hygienic practices [12]. In total, 115 food and water borne outbreaks were reported and verified from 2012-2016. During this period, a total of 17,246 cases and 143 deaths were reported [13].

In 2017, the WHO published a list of leading global pathogens and their antimicrobial resistance [14]. The resistance of leading global pathogens to quinolones were among the top priorities. Quinolones are considered a first choice in the treatment of intestinal bacterial infections in humans and animals. They were developed in the 1960s and 1980s. They were completely synthetic compound and has a bactericidal effect on most Enterobacteriaceae [15,16]. Nalidixic acid is one of the first-generation quinolones and effective against urinary tract infections [16]. Ciprofloxacin, norfloxacin, oxofloxacin, pefloxacin, and enrofloxacin belong to the second generation (fluoroquinolones), showing greater potency and a broader spectrum [23,24]. They are particularly effective against Gram-negative bacteria and several Gram-posibtive and intracellular bacteria. Fluoroquinolones had an additional fluorine atom at the C-6 position and a piperazinyl or related ring at the position C-7 on the quinolone molecule [16,17]. Soon after quinolone introduction, resistant isolates emerged, which seems unlikely because it is a fully synthetic drug [15,16]. Then, resistance towards quinolones has become widespread among Enterobacteriaceae in the decades, hampering its effectiveness towards stubborn bacterial pathogens [18].

Quinolones primarily inhibit the action of type II topoisomerases including DNA gyrase and topoisomerase IV. Type II topoisomerases are enzymes that mediate the relaxedsupercoiled and catenated-decatenated DNA and are crucial for several DNA-associated processes, such as replication and transcription [19]. DNA gyrase and topoisomerase IV are both heterotetrameric enzymes composed of two pairs of identical subunits, GyrA2GyrB2 and ParC2ParE2, respectively [20]. DNA gyrase was the primary target for Gram-negative bacteria, whereas topoisomerase IV in the Gram-positives bacteria [21]. Quinolones have been shown to bind to the DNA gyrase/topoisomerase IV–DNA complex. The intercalation of quinolone into DNA gyrase/topoisomerase IV-DNA complex is responsible for the inhibition of DNA replication and transcription, caused double-strand break [19,22].

Currently, the acquisition of quinolone resistance was associated with chromosomal mutations that alter the target sites and alter membrane permeability that reduced drug accumulation by efflux/influx pumps. Another quinolone resistance mechanism is by acquiring plasmid-mediated quinolone resistance (PMQR) genes [20].

Specific point mutations in DNA gyrase and topoisomerase IV, mostly confer highlevel resistance are often found in a region termed the quinolone resistance determining region (QRDR) [19,20]. Mutations in the QRDRs of these genes result in amino acid substitutions that architecturally altered the target protein, and subsequently, the drug-binding affinity of the enzyme. Mutations in QRDRs of GyrA and ParC are commonly found and less frequent in those of GyrB and ParE [23]. Resistance-conferring mutations outside the traditional QRDR have also been identified [19].

Recently, PMQR genes have been identified as an emerging clinical problem that usually leads to low-level resistance [19,20,23]. Currently, there are three clinically relevant genes related to plasmid-mediated quinolone resistance: (i) qnr, which encodes proteins belonging to the pentapeptide repeat proteins that protect target site; (ii) aac(6′)-Ib-cr, acetylates the unsubstituted nitrogen of the C7 piperazine ring of norfloxacin and ciprofloxacin, which decreases drug activity; (iii) qepA and oqxAB, which mediates antibiotic efflux. Nonetheless, many PMQR determinants have been identify recently since the first PMQR was discover.

As with the 2019 Philippine AMR surveillance program report, clinical E. coli rates of resistance against fluoroquinolones and third generation cephalosporins have been increasing for the past 10 years [24]. The resistance rates against ciprofloxacin was 41.3% to 46.6% and ceftriaxone was 24.2% to 39.9%. Emerging resistance to carbapenem was also reported in 2019 with resistance rates of 1.1% to 6.4% for meropenem and slight decrease in imipenem from 10.6% to 6.0%, but not statically significant. Of all E. coli tested for extended-spectrum β – lactamase (ESBL) production, 53.2% were positive. Salmonella enterica serovar Typhi isolates have remained susceptible to first line antibiotics. Resistance rates of S. Typhi against ampicillin, co-trimoxazole, ceftriaxone and chloramphenicol still remained at less than 5% for the past 10 years. There has been an increase in resistance in S. Typhi to ciprofloxacin for the past two years, although not statistically significant. In non-typhoidal Salmonella, increasing resistance to levofloxacin was noted with resistance rates of 20.9%, which was higher than the rate of 5% reported in 2018 [24]. The resistance of non-typhoidal Salmonella against ciprofloxacin was seen to be decreasing from 14.3% to 9.8%. Among the confirmed non-typhoidal Salmonella, the most common identified were S. enterica serovar Typhimurium and S. enterica serovar Enteritidis, which were also the most common for the past five years. All of these data were mainly obtained through the antimicrobial resistance surveillance and monitoring system of Research Institute for Tropical Medicine of the Department of Health, the Philippines.

Unlike in human health sector, AMR surveillance system in animal health sector in the Philippines is still under development. The AMR surveillance system on animal health sector will prioritized zoonotic pathogen species (Salmonella spp.., and Campylobacter spp.) and commensal bacteria (E. coli and Enterococcus spp.). According to Philippine Action Plan to Combat AMR 2019-2023, it is reported that limited studies were conducted in AMR related to livestock animals [25–30]. Surveillance of AMR within the entire agricultural sector is not yet unified, as some organizations conduct their own surveillance activities. Moreover, researches were difficult to access, and data were not yet disseminated to inform/share to both animal and human health stakeholders [2].

Likewise, the detection of quinolone/fluoroquinolone-resistant bacteria has been increasing in animal and their food products in the Philippines. For instance, the prevalence rates of nalidixic acid and ciprofloxacin resistance in strains isolated from food-producing animals and their food products were found from 10% to 97.5% and 5% to 88.4%, respectively [25,27,30–32]. In environmental samples from soil and agricultural irrigation water, the detected resistance rate against nalidixic acid and ciprofloxacin was up to 35.4% and 6.8%, respectively [28,29]. Previous studies focused on the phenotypic characterization of the resistance determinants of bacteria to some extent. However, those studies mostly scrutinized the ESBL resistance mechanism of bacteria [31,32].

Despite on molecular research advancement, study on genetic diversity and antimicrobial resistance genes (ARGs) profile of foodborne bacterial isolates was still limited in the Philippines. Molecular data on foodborne bacteria can provide better epidemiological view for tracing foodborne infection. Hence, I carried out a research including surveillance and characterization of antimicrobial resistant E. coli in the Philippines. This thesis aimed to provide overview of the AMR status in food-producing animals and animal-derived food and clonal distribution of quinolone non-susceptible E. coli in the Philippines. In addition, the generated molecular data on this study would fill up the AMR information/data gap in animal health sector in the Philippines. In chapter I, the prevalence of E. coli and quinolone resistant determinant were studied from various food-producing animals and animal-derived food. In chapter II, characterization of plasmids among qnr-harboring isolates were further investigated.

この論文で使われている画像

参考文献

1. Giedraitiene, A.; Vitkauskiene, A.; Naginiene, R.; Pavilonis, A. Antibiotic Resistance Mechanisms of Clinically Important Bacteria. Medicina (B. Aires). 2011, 47 (3), 137– 146. https://doi.org/10.3390/medicina47030019.

2. Inter-Agency Committee on Antimicrobial Resistance (ICAMR). The Philippine Action Plan to Combat Antimicrobial Resistance 2019-2023; Manila, Philipines, 2019.

3. Yamamoto, S.; Nakano, M.; Kitagawa, W.; Tanaka, M.; Sone, T.; Hirai, K.; Asano, K. Characterization of Multi-Antibiotic-Resistant Escherichia coli Isolated from Beef Cattle in Japan. Microbes Environ. 2014, 29 (2), 136–144. https://doi.org/10.1264/jsme2.ME13173.

4. World Health Organization (WHO). WHO Estimates of the Global Burden of Foodborne Diseases: Food-Borne Disease Burden Epidemiology Reference Group; World Health Organization (WHO): Geneva, Switzerland, 2015.

5. Kar, D.; Bandyopadhyay, S.; Bhattacharyya, D.; Samanta, I.; Mahanti, A.; Nanda, P. K.; Mondal, B.; Dandapat, P.; Das, A. K.; Dutta, T. K.; Bandyopadhyay, S.; Singh, R. K. Molecular and Phylogenetic Characterization of Multidrug Resistant Extended Spectrum Beta-Lactamase Producing Escherichia coli Isolated from Poultry and Cattle in Odisha, India. Infect. Genet. Evol. 2015, 29, 82–90. https://doi.org/10.1016/j.meegid.2014.11.003.

6. Mahanti, A.; Samanta, I.; Bandopaddhay, S.; Joardar, S. N.; Dutta, T. K.; Batabyal, S.; Sar, T. K.; Isore, D. P. Isolation, Molecular Characterization and Antibiotic Resistance of Shiga Toxin-Producing Escherichia coli (STEC) from Buffalo in India. Lett. Appl. Microbiol. 2013, 56 (4), 291–298. https://doi.org/10.1111/lam.12048.

7. Oliver, S. P.; Jayarao, B. M.; Almeida, R. A. Foodborne Pathogens in Milk and the Dairy Farm Environment: Food Safety and Public Health Implications. Foodborne Pathog. Dis. 2005, 2 (2), 115–129. https://doi.org/10.1089/fpd.2005.2.115.

8. Le Loir, Y.; Baron, F. .; Gautier, M. Staphylococcus aureus and Food Poisoning. Genetics and Molecular Research. Genet. Mol. Res. 2003, 2 (1), 63–76.

9. Tanzin, T.; Nazir, K. H. M. N. H.; Zahan, M. N.; Parvej, M. S.; Zesmin, K.; Rahman, M. T. Antibiotic Resistance Profile of Bacteria Isolated from Raw Milk Samples of Cattle and Buffaloes. J. Adv. Vet. Anim. Res. 2016, 3 (1), 62–67. https://doi.org/10.5455/javar.2016.c133. 55

10. World Health Organization (WHO). Integrated Surveillance of Antimicrobial Resistance in Foodborne Bacteria: Application of a One Health Approach; World Health Organization (WHO): Geneva, Switzerland, 2017.

11. Azanza, M. P. V.; Membrebe, B. N. Q.; Sanchez, R. G. R.; Estilo, E. E. C.; Dollete, U. G. M.; Feliciano, R. J.; Garcia, N. K. A. Foodborne Disease Outbreaks in the Philippines (2005–2018). Philipp. J. Sci. 2019, 148 (2), 317–336.

12. Carlos, C. C.; Anarna, M. S.; Bicol, G. M.; Davide, A. C.; De La Cruz, M. C.; De Los Reyes, V. C.; Esparar, D.; Galang, H.; Geronimo, J.; Go, M.; Jamoralin, M.; Lagrada, M.; Marayag, N.; Roque, V.; Sia, S. B.; Bigay, R.; Cabantac, L.; Garcia, J.; Gonzalo, S.; Platero, J.; Raymundo, B.; Retes, L.; Vicente, M. B.; Gotis, M. Q.; Templonuevo, E. T. Manual of Procedures for the Surveillance , Outbreak Investigation and Response To Microbial Agents of Food and Waterborne Disease; Manila, Philipines, 2007.

13. Deparment of Health (DOH). 2019-2023 Food and Waterborne Disease Prevention and Control Program; Infectious Disease Office (IDO) - Disease Prevention and Control Bureau (DPCPB): Manila, Philipines, 2019.

14. World Health Organization (WHO). Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics.; World Health Organization (WHO): Geneva, Switzerland, 2017.

15. Robicsek, A.; Strahilevitz, J.; Sahm, D. F.; Jacoby, G. A.; Hooper, D. C. Qnr Prevalence in Ceftazidime-Resistant Enterobacteriaceae Isolates from the United States. Antimicrob. Agents Chemother. 2006, 50 (8), 2872–2874. https://doi.org/10.1128/AAC.01647-05.

16. Jacoby, G. A.; Strahilevitz, J.; Hooper, D. C. Plasmid-Mediated Quinolone Resistance – PMQR. Microbiol. Spectr. 2014, 2 (2). https://doi.org/https://doi.org/10.1128/microbiolspec.PLAS-0006-2013.

17. Poirel, L.; Cattoir, V.; Nordmann, P. Plasmid-Mediated Quinolone Resistance; Interactions between Human, Animal, and Environmental Ecologies. Front. Microbiol. 2012, 3 (FEB), 1–7. https://doi.org/10.3389/fmicb.2012.00024.

18. Strahilevitz, J.; Jacoby, G. A.; Hooper, D. C.; Robicsek, A. Plasmid-Mediated Quinolone Resistance: A Multifaceted Threat. Clin. Microbiol. Rev. 2009, 22 (4), 664–689. https://doi.org/10.1128/CMR.00016-09.

19. Bush, N. G.; Diez-Santos, I.; Abbott, L. R.; Maxwell, A. Quinolones: Mechanism, Lethality and Their Contributions to Antibiotic Resistance. Molecules 2020, 25 (23), 5662. https://doi.org/10.3390/molecules25235662. 56

20. Correia, S.; Poeta, P.; Hébraud, M.; Capelo, J. L.; Igrejas, G. Mechanisms of Quinolone Action and Resistance: Where Do We Stand? J. Med. Microbiol. 2017, 66 (5), 551–559. https://doi.org/10.1099/jmm.0.000475.

21. Andriole, V. T. The Quinolones: Past, Present, and Future. Clin. Infect. Dis. 2005, 41 (Supplement_2), S113–S119. https://doi.org/10.1086/428051.

22. Nordmann, P.; Poirel, L. Emergence of Plasmid-Mediated Resistance to Quinolones in Enterobacteriaceae. J. Antimicrob. Chemother. 2005, 56 (3), 463–469. https://doi.org/10.1093/jac/dki245.

23. Aldred, K. J.; Kerns, R. J.; Osheroff, N. Mechanism of Quinolone Action and Resistance. Biochemistry 2014, 53 (10), 1565–1574. https://doi.org/doi.org/10.1021/bi5000564.

24. Department of Health (DOH). Antimicrobial Resistance Surveillance Program Annual Report - 2019; Research Institute for Tropical Medicine, Antimicrobial Resistance Surveillance Reference Laboratory: Manila, Philipines, 2020.

25. Jiao, S. C.; Fami, R. M. L.; Pedernal, V. A. D.; Cabrera, E. C. Prevalence of Multiple Drug-Resistant Escherichia coli from Chicken, Pig and Nile Tilapia (Oreochromis Nilotica) Intestines Sold in Wet Markets in Manila and the Conjugative Transferability of the Resistance. Philipp. Agric. Sci. 2007, 90 (1), 64–70.

26. De Guzman, M. L. C.; Manzano, R. M. E.; Monjardin, J. F. B. Antibiotic Resistant Bacteria in Raw Chicken Meat Sold in a Public Market in Quezon City, Philippines. Philipp. J. Heal. Res. Dev. 2016, 20 (4), 43–51.

27. Torio, H. E.; Padilla, M. A. Multiple Resistance to Medically Important Antimicrobials of Commensal Escherichia coli Isolated from Dressed Broiler Chickens in Calabarzon, Philippines. Philipp. J. Vet. Med. 2018, 55 (2), 95–106.

28. Vital, P. G.; Caballes, M. B. D.; Rivera, W. L. Antimicrobial Resistance in Escherichia coli and Salmonella spp.. Isolates from Fresh Produce and the Impact to Food Safety. J. Environ. Sci. Heal. - Part B Pestic. Food Contam. Agric. Wastes 2017, 52 (9), 683–689. https://doi.org/10.1080/03601234.2017.1331676.

29. Paraoan, C. E. M.; Rivera, W. L.; Vital, P. G. Detection of Class I and II Integrons for the Assessment of Antibiotic and Multidrug Resistance among Escherichia coli Isolates from Agricultural Irrigation Waters in Bulacan, Philippines. J. Environ. Sci. Heal. - Part B Pestic. Food Contam. Agric. Wastes 2017, 52 (5), 306–313. https://doi.org/10.1080/03601234.2017.1281647.

30. Padilla, M. A.; Amatorio, M. Q. High Level Resistance and Multi-Resistance to 57 Medically Important Antimicrobials in Escherichia coli Isolated from Healthy Pigs at Slaughter in Laguna, Philippines. Philipp. J. Vet. Med. 2017, 54 (1), 36–45.

31. Gundran, R. S.; Cardenio, P. A.; Salvador, R. T.; Sison, F. B.; Benigno, C. C.; Kreausukon, K.; Pichpol, D.; Punyapornwithaya, V. Prevalence, Antibiogram, and Resistance Profile of Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolates from Pig Farms in Luzon, Philippines. Microb. Drug Resist. 2020, 26 (2), 160– 168. https://doi.org/10.1089/mdr.2019.0019.

32. Gundran, R. S.; Cardenio, P. A.; Villanueva, M. A.; Sison, F. B.; Benigno, C. C.; Kreausukon, K.; Pichpol, D.; Punyapornwithaya, V. Prevalence and Distribution of Bla CTX-M, Bla SHV, Bla TEM Genes in Extended- Spectrum β- Lactamase- Producing E. Coli Isolates from Broiler Farms in the Philippines. BMC Vet. Res. 2019, 15 (1), 1–8. https://doi.org/10.1186/s12917-019-1975-9.

33. North, J. Challenges to Tackling Antimicrobial Resistance: Economic and Policy Responses; Anderson, M., Cecchini, M., Mossialos, E., Eds.; European Observatory on Health Systems and Policies; Cambridge University Press: Cambridge, 2020; Vol. 53. https://doi.org/DOI 10.1017/9781108864121.

34. Food and Agriculture of the United Nations (FAO). The FAO Action Plan on Antimicrobial Resistance, 2016–2020: Supporting the Food and Agriculture Sectors in Implementing the Global Action Plan on Antimicrobial Resistance to Minimize the Impact of Antimicrobial Resistance; Rome, Italy, 2015.

35. Todd, E. Food-Borne Disease Prevention and Risk Assessment. Int. J. Environ. Res. Public Health 2020, 17 (14), 1–13. https://doi.org/10.3390/ijerph17145129.

36. Hao, H.; Sander, P.; Iqbal, Z.; Wang, Y.; Cheng, G.; Yuan, Z. The Risk of Some Veterinary Antimicrobial Agents on Public Health Associated with Antimicrobial Resistance and Their Molecular Basis. Front. Microbiol. 2016, 7 (OCT), 1–11. https://doi.org/10.3389/fmicb.2016.01626.

37. Cheng, A. C.; Turnidge, J.; Collignon, P.; Looke, D.; Barton, M.; Gottlieb, T. Control of Fluoroquinolone Resistance through Successful Regulation, Australia. Emerg. Infect. Dis. 2012, 18 (9), 1453–1460. https://doi.org/10.3201/eid1809.111515.

38. Seo, K. W.; Lee, Y. J. Characterization of Plasmid Mediated Quinolone Resistance Determinants in Ciprofloxacin Resistant-Escherichia coli from Chicken Meat Produced by Integrated Broiler Operations in Korea. Int. J. Food Microbiol. 2019, 307 (June 2018), 108274. https://doi.org/10.1016/j.ijfoodmicro.2019.108274. 58

39. Poirel, L.; Madec, J.-Y.; Lupo, A.; Schink, A.-K.; Kieffer, N.; Nordmann, P.; Schwarz, S. Antimicrobial Resistance in Escherichia coli. Microbiol Spectr. 2018, 6 (4), 1–27. https://doi.org/DOI: 10.1128/microbiolspec.ARBA-0026-2017.

40. Yang, T.; Zeng, Z.; Rao, L.; Chen, X.; He, D.; Lv, L.; Wang, J.; Zeng, L.; Feng, M.; Liu, J. H. The Association between Occurrence of Plasmid-Mediated Quinolone Resistance and Ciprofloxacin Resistance in Escherichia coli Isolates of Different Origins. Vet. Microbiol. 2014, 170 (1–2), 89–96. https://doi.org/10.1016/j.vetmic.2014.01.019.

41. Trongjit, S.; Angkittitrakul, S.; Chuanchuen, R. Occurrence and Molecular Characteristics of Antimicrobial Resistance of Escherichia coli from Broilers, Pigs and Meat Products in Thailand and Cambodia Provinces. Microbiol. Immunol. 2016, 60 (9), 575–585. https://doi.org/10.1111/1348-0421.12407.

42. Clinical and Laboratory Standards Institute (CLSI). M100: Performance Standards for Antimicrobial Susceptibility Testing, 27th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2017.

43. Clinical and Laboratory Standards Institute (CLSI). M07: Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 11th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018.

44. Clinical and Laboratory Standards Institute (CLSI). M100: Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020.

45. Yu, T.; Jiang, X.; Fu, K.; Liu, B.; Xu, D.; Ji, S.; Zhou, L. Detection of ExtendedSpectrum β-Lactamase and Plasmid-Mediated Quinolone Resistance Determinants in Escherichia coli Isolates from Retail Meat in China. J. Food Sci. 2015, 80 (5), M1039– M1043. https://doi.org/10.1111/1750-3841.12870.

46. Utrarachkij, F.; Nakajima, C.; Changkwanyeun, R.; Siripanichgon, K.; Kongsoi, S.; Pornruangwong, S.; Changkaew, K.; Tsunoda, R.; Tamura, Y.; Suthienkul, O.; Suzuki, Y. Quinolone Resistance Determinants of Clinical Salmonella Enteritidis in Thailand. Microb. Drug Resist. 2017, 23 (7), 885–894. https://doi.org/10.1089/mdr.2015.0234.

47. Rodríguez-Martínez, J. M.; Velasco, C.; Pascual, A.; García, I.; Martínez-Martínez, L. Correlation of Quinolone Resistance Levels and Differences in Basal and QuinoloneInduced Expression from Three QnrA-Containing Plasmids. Clin. Microbiol. Infect. 2006, 12 (5), 440–445. https://doi.org/10.1111/j.1469-0691.2006.01389.x.

48. Armas-Freire, P. I.; Trueba, G.; Proaño-Bolaños, C.; Levy, K.; Zhang, L.; Marrs, C. F.; 59 Cevallos, W.; Eisenberg, J. N. S. Unexpected Distribution of the FluoroquinoloneResistance Gene QnrB in Escherichia coli Isolates from Different Human and Poultry Origins in Ecuador. Int. Microbiol. 2015, 18 (2), 85–90. https://doi.org/10.2436/20.1501.01.237.

49. Minarini, L. A. R.; Poirel, L.; Cattoir, V.; Darini, A. L. C.; Nordmann, P. PlasmidMediated Quinolone Resistance Determinants among Enterobacterial Isolates from Outpatients in Brazil. J. Antimicrob. Chemother. 2008, 62 (3), 474–478. https://doi.org/10.1093/jac/dkn237.

50. Frasson, I.; Cavallaro, A.; Bergo, C.; Richter, S. N.; Palù, G. Prevalence of Aac(6′)-IbCr Plasmid-Mediated and Chromosome-Encoded Fluoroquinolone Resistance in Enterobacteriaceae in Italy. Gut Pathog. 2011, 3 (1), 3–7. https://doi.org/10.1186/1757- 4749-3-12.

51. Wirth, T.; Falush, D.; Lan, R.; Colles, F.; Mensa, P.; Wieler, L. H.; Karch, H.; Reeves, P. R.; Maiden, M. C. J.; Ochman, H.; Achtman, M. Sex and Virulence in Escherichia coli: An Evolutionary Perspective. Mol. Microbiol. 2006, 60 (5), 1136–1151. https://doi.org/10.1111/j.1365-2958.2006.05172.x.

52. Fujioka, M.; Otomo, Y.; Ahsan, C. R. A Novel Single-Step Multiplex Polymerase Chain Reaction Assay for the Detection of Diarrheagenic Escherichia coli. J. Microbiol. Methods 2013, 92 (3), 289–292. https://doi.org/10.1016/j.mimet.2012.12.010.

53. Clermont, O.; Christenson, J. K.; Denamur, E.; Gordon, D. M. The Clermont Escherichia coli Phylo-Typing Method Revisited: Improvement of Specificity and Detection of New Phylo-Groups. Environ. Microbiol. Rep. 2013, 5 (1), 58–65. https://doi.org/10.1111/1758-2229.12019.

54. Elumba, Z. S.; M Allera, M. L.; Taganas, R. R. R. Occurrence and Antibiotic Sensitivity of Escherichia coli and Salmonella spp.. in Retail Chicken Meat at Selected Markets in Valencia City, Bukidnon, Philippines. Asian J. Biol. Life Sci. 2018, 7 (2), 53–58. https://doi.org/10.5530/ajbls.2018.7.4.

55. Rahman, M. A.; Rahman, A. K. M. A.; Islam, M. A.; Alam, M. M. Antimicrobial Resistance of Escherichia coli Isolated From Milk, Beef And Chicken Meat in Bangladesh. Bangladesh J. Vet. Med. 2017, 15 (6), 141–146. https://doi.org/DOI: https://doi.org/10.3329/bjvm.v15i2.35525.

56. Barroga, T. R. M.; Morales, R. G.; Benigno, C. C.; Castro, S. J. M.; Caniban, M. M.; Cabullo, M. F. B.; Agunos, A.; de Balogh, K.; Dorado-Garcia, A. Antimicrobials Used 60 in Backyard and Commercial Poultry and Swine Farms in the Philippines: A Qualitative Pilot Study. Front. Vet. Sci. 2020, 7 (July), 1–8. https://doi.org/10.3389/fvets.2020.00329.

57. Boeckel, T. P. Van; Brower, C.; Gilbert, M.; Grenfell, B. T.; Levin, S. A.; Robinson, T. P.; Teillant, A.; Laxminarayan, R. Global Trends in Antimicrobial Use in Food Animals. Proc. Natl. Acad. Sci. 2015, 112 (18), 5649–5654. https://doi.org/10.1073/PNAS.1503141112.

58. Department of Agriculture (DA) and Department of Health (DOH). Declaring a Ban on the Use of Chloramphenicol in Food Producing Animals: Department of Agriculture (DA) Administrative Order No. 60, Series of 1990; Department of Health (DOH) Administrative Order No. 91, Series of 1990; Manila, Philipines, 1990.

59. Mølbak, K. Human Health Consequences of Antimicrobial Drug-Resistant Salmonella and Other Foodborne Pathogens. Clin. Infect. Dis. 2005, 41 (11), 1613–1620. https://doi.org/10.1086/497599.

60. Nair, D. V. T.; Venkitanarayanan, K.; Johny, A. K. Antibiotic-Resistant Salmonella in the Food Supply and the Potential Role of Antibiotic Alternatives for Control. Foods 2018, 7 (10). https://doi.org/10.3390/foods7100167.

61. Hopkins, K. L.; Davies, R. H.; Threlfall, E. J. Mechanisms of Quinolone Resistance in Escherichia coli and Salmonella: Recent Developments. Int. J. Antimicrob. Agents 2005, 25 (5), 358–373. https://doi.org/10.1016/j.ijantimicag.2005.02.006.

62. World Health Oorganization (WHO). Critically Important Antimicrobials for Human Medicine, 6th Revision; World Health Organization (WHO): Geneva, Switzerland, 2019.

63. Tamang, M. D.; Nam, H. M.; Chae, M. H.; Kim, S. R.; Gurung, M.; Jang, G. C.; Jung, S. C.; Lim, S. K. Prevalence of Plasmid-Mediated Quinolone Resistance Determinants among Escherichia coli Isolated from Food Animals in Korea. Foodborne Pathog. Dis. 2012, 9 (12), 1057–1063. https://doi.org/10.1089/fpd.2012.1225.

64. Hang, B. P. T.; Wredle, E.; Börjesson, S.; Sjaunja, K. S.; Dicksved, J.; Duse, A. High Level of Multidrug-Resistant Escherichia coli in Young Dairy Calves in Southern Vietnam. Trop. Anim. Health Prod. 2019, 51 (6), 1405–1411. https://doi.org/10.1007/s11250-019-01820-6.

65. Uchida, Y.; Mochimaru, T.; Morokuma, Y.; Kiyosuke, M.; Fujise, M.; Eto, F.; Eriguchi, Y.; Nagasaki, Y.; Shimono, N.; Kang, D. Clonal Spread in Eastern Asia of Ciprofloxacin-Resistant Escherichia coli Serogroup O25 Strains, and Associated 61 Virulence Factors. Int. J. Antimicrob. Agents 2010, 35 (5), 444–450. https://doi.org/10.1016/j.ijantimicag.2009.12.012.

66. Uchida, Y.; Mochimaru, T.; Morokuma, Y.; Kiyosuke, M.; Fujise, M.; Eto, F.; Harada, Y.; Kadowaki, M.; Shimono, N.; Kang, D. Geographic Distribution of FluoroquinoloneResistant Escherichia coli Strains in Asia. Int. J. Antimicrob. Agents 2010, 35 (4), 387– 391. https://doi.org/10.1016/j.ijantimicag.2009.12.005.

67. Takasu, H.; Suzuki, S.; Reungsang, A.; Viet, P. H. Fluoroquinolone (FQ) Contamination Does Not Correlate with Occurrence of FQ-Resistant Bacteria in Aquatic Environments of Vietnam and Thailand. Microbes Environ. 2011, 26 (2), 135–143. https://doi.org/10.1264/jsme2.ME10204.

68. Tyson, G. H.; Li, C.; Hsu, C. H.; Bodeis-Jones, S.; McDermott, P. F. Diverse Fluoroquinolone Resistance Plasmids From Retail Meat E. Coli in the United States. Front. Microbiol. 2019, 10 (December), 1–7. https://doi.org/10.3389/fmicb.2019.02826.

69. Lascols, C.; Robert, J.; Cattoir, V.; Bébéar, C.; Cavallo, J. D.; Podglajen, I.; Ploy, M. C.; Bonnet, R.; Soussy, C. J.; Cambau, E. Type II Topoisomerase Mutations in Clinical Isolates of Enterobacter Cloacae and Other Enterobacterial Species Harbouring the QnrA Gene. Int. J. Antimicrob. Agents 2007, 29 (4), 402–409. https://doi.org/10.1016/j.ijantimicag.2006.11.008.

70. Röderova, M.; Halova, D.; Papousek, I.; Dolejska, M.; Masarikova, M.; Hanulik, V.; Pudova, V.; Broz, P.; Htoutou-Sedlakova, M.; Sauer, P.; Bardon, J.; Cizek, A.; Kolar, M.; Literak, I. Characteristics of Quinolone Resistance in Escherichia coli Isolates from Humans, Animals, and the Environment in the Czech Republic. Front. Microbiol. 2017, 7 (JAN), 1–12. https://doi.org/10.3389/fmicb.2016.02147.

71. Tian, G. B.; Garcia, J.; Adams-Haduch, J. M.; Evangelista, J. P.; Destura, R. V.; Wang, H. N.; Doi, Y. CTX-M as the Predominant Extended-Spectrum β-Lactamases among Enterobacteriaceae in Manila, Philippines. J. Antimicrob. Chemother. 2010, 65 (3), 584– 586. https://doi.org/10.1093/jac/dkp480.

72. Kanamori, H.; Navarro, R. B.; Yano, H.; Sombrero, L. T.; Capeding, M. R. Z.; Lupisan, S. P.; Olveda, R. M.; Arai, K.; Kunishima, H.; Hirakata, Y.; Kaku, M. Molecular Characteristics of Extended-Spectrum β-Lactamases in Clinical Isolates of Enterobacteriaceae from the Philippines. Acta Trop. 2011, 120 (1–2), 140–145. https://doi.org/10.1016/j.actatropica.2011.07.007.

73. Umpiérrez, A.; Bado, I.; Oliver, M.; Acquistapace, S.; Etcheverría, A.; Padola, N. L.; 62 Vignoli, R.; Zunino, P. Zoonotic Potential and Antibiotic Resistance of Escherichia coli in Neonatal Calves in Uruguay. Microbes Environ. 2017, 32 (3), 275–282. https://doi.org/10.1264/jsme2.ME17046.

74. Mamani, R.; Flament-Simon, S. C.; García, V.; Mora, A.; Alonso, M. P.; López, C.; García-Meniño, I.; Díaz-Jiménez, D.; Blanco, J. E.; Blanco, M.; Blanco, J. Sequence Types, Clonotypes, Serotypes, and Virotypes of Extended-Spectrum β-LactamaseProducing Escherichia coli Causing Bacteraemia in a Spanish Hospital over a 12-Year Period (2000 to 2011). Front. Microbiol. 2019, 10 (JULY), 1–11. https://doi.org/10.3389/fmicb.2019.01530.

75. Salim, A.; Babu, P.; Mohan, K.; Moorthy, M.; Raj, M.; Thirumeni, S. K.; Suresh, S.; Madhavan, A.; Nair, B. G.; Chattopadhyay, S.; Pala, S. Draft Genome Sequence of an Escherichia coli Sequence Type 155 Strain Isolated from Sewage in Kerala, India. 2019, 8 (27), 1–2. https://doi.org/https://doi.org/10.1128/ MRA.01707-18.

76. Baquero, F.; Tedim, A. P.; Coque, T. M. Antibiotic Resistance Shaping Multi-Level Population Biology of Bacteria. Front. Microbiol. 2013, 4 (MAR), 1–15. https://doi.org/10.3389/fmicb.2013.00015.

77. Mathers, A. J.; Peirano, G.; Pitout, J. D. D. The Role of Epidemic Resistance Plasmids and International High- Risk Clones in the Spread of Multidrug-Resistant Enterobacteriaceae. Clin. Microbiol. Rev. 2015, 28 (3), 565–591. https://doi.org/10.1128/CMR.00116-14.

78. Suzuki, Y.; Nazareno, J.; Nakano, R.; Mondoy, M.; Nakano, A.; Bugayong, P. Environmental Presence and Genetic Characteristics of Carbapenemase-Producing Enterobacteriaceae from Hospital Sewage and River Water in the Philippines. Appl. Environ. Microbiol. 2020, 86 (2), 1–10. https://doi.org/doi.org/10 .1128/AEM.01906-19.

79. Manges, A. R. Escherichia coli and Urinary Tract Infections: The Role of Poultry-Meat. Clin. Microbiol. Infect. 2016, 22 (2), 122–129. https://doi.org/10.1016/j.cmi.2015.11.010.

80. Kindle, P.; Zurfluh, K.; Nüesch-Inderbinen, M.; Von Ah, S.; Sidler, X.; Stephan, R.; Kümmerlen, D. Phenotypic and Genotypic Characteristics of Escherichia coli with NonSusceptibility to Quinolones Isolated from Environmental Samples on Pig Farms. Porc. Heal. Manag. 2019, 5 (1), 1–12. https://doi.org/10.1186/s40813-019-0116-y.

81. Guo, S. Y.; Wakeham, D.; Brouwers, H. J. M.; Cobbold, R. N.; Abraham, S.; Mollinger, J. L.; Johnson, J. R.; Chapman, T. A.; Gordon, D. M.; Barrs, V. R.; Trott, D. J. Human- 63 Associated Fluoroquinolone-Resistant Escherichia coli Clonal Lineages, Including ST354, Isolated from Canine Feces and Extraintestinal Infections in Australia. Microbes Infect. 2015, 17 (4), 266–274. https://doi.org/10.1016/j.micinf.2014.12.016.

82. Wang, H.; Zhong, Z.; Luo, Y.; Cox, E.; Devriendt, B. Heat-Stable Enterotoxins of Enterotoxigenic Escherichia coli and Their Impact on Host Immunity. Toxins (Basel). 2019, 11 (1), 1–12. https://doi.org/10.3390/toxins11010024.

83. Dubreuil, J. D. EAST1 Toxin: An Enigmatic Molecule Associated with Sporadic Episodes of Diarrhea in Humans and Animals. J. Microbiol. 2019, 57 (7), 541–549. https://doi.org/10.1007/s12275-019-8651-4.

84. Itoh, Y.; Nagano, I.; Kunishima, M.; Ezaki, T. Laboratory Investigation of Enteroaggregative Escherichia coli O Untypeable:H10 Associated with a Massive Outbreak of Gastrointestinal Illness. J. Clin. Microbiol. 1997, 35 (10), 2546–2550. https://doi.org/10.1128/jcm.35.10.2546-2550.1997.

85. Savarino, S. J.; Fasano, A.; Watson, J.; Martin, B. M.; Levine, M. M.; Guandalini, S.; Guerry, P. Enteroaggregative Escherichia coli Heat-Stable Enterotoxin 1 Represents Another Subfamily of E. Coli Heat-Stable Toxin. Proc. Natl. Acad. Sci. U. S. A. 1993, 90 (7), 3093–3097. https://doi.org/10.1073/pnas.90.7.3093.

86. Sukkua, K.; Manothong, S.; Sukhumungoon, P. Seroprevalence and Molecular Epidemiology of EAST1 Gene-Carrying Escherichia coli from Diarrheal Patients and Raw Meats. J. Infect. Dev. Ctries. 2017, 11 (3), 220–227. https://doi.org/10.3855/jidc.6865.

87. Ochi, S.; Shah, M.; Odoyo, E.; Bundi, M.; Miringu, G.; Guyo, S.; Wandera, E.; Kathiiko, C.; Kariuki, S.; Karama, M.; Tsuji, T.; Ichinose, Y. An Outbreak of Diarrhea in Mandera, Kenya, Due to Escherichia coli Serogroup o-Nontypable Strain That Had a Coding Gene for Enteroaggregative E. Coli Heat-Stable Enterotoxin 1. Am. J. Trop. Med. Hyg. 2017, 96 (2), 457–464. https://doi.org/10.4269/ajtmh.16-0310.

88. Ferri, M.; Ranucci, E.; Romagnoli, P.; Giaccone, V. Antimicrobial Resistance: A Global Emerging Threat to Public Health Systems. Crit. Rev. Food Sci. Nutr. 2017, 57 (13), 2857–2876. https://doi.org/10.1080/10408398.2015.1077192.

89. Tansirichaiya, S.; Moyo, S. J.; Al-Haroni, M.; Roberts, A. P. Capture of a Novel, Antibiotic Resistance Encoding, Mobile Genetic Element from Escherichia coli Using a New Entrapment Vector. J. Appl. Microbiol. 2021, 130 (3), 832–842. https://doi.org/10.1111/jam.14837. 64

90. Roope, L. S. J.; Smith, R. D.; Pouwels, K. B.; Buchanan, J.; Abel, L.; Eibich, P.; Butler, C. C.; Tan, P. S.; Sarah Walker, A.; Robotham, J. V.; Wordsworth, S. The Challenge of Antimicrobial Resistance: What Economics Can Contribute. Science (80-. ). 2019, 364 (6435). https://doi.org/10.1126/science.aau4679.

91. Salverda, M. L. M.; Koomen, J.; Koopmanschap, B.; Zwart, M. P.; De Visser, J. A. G. M. Adaptive Benefits from Small Mutation Supplies in an Antibiotic Resistance Enzyme. Proc. Natl. Acad. Sci. U. S. A. 2017, 114 (48), 12773–12778. https://doi.org/10.1073/pnas.1712999114.

92. Sun, D.; Jeannot, K.; Xiao, Y.; Knapp, C. W. Editorial: Horizontal Gene Transfer Mediated Bacterial Antibiotic Resistance. Front. Microbiol. 2019, 10. https://doi.org/10.3389/fmicb.2019.01933.

93. Le Roux, F.; Blokesch, M. Eco-Evolutionary Dynamics Linked to Horizontal Gene Transfer in Vibrios. Annu. Rev. Microbiol. 2018, 72, 89–110. https://doi.org/10.1146/annurev-micro-090817-062148.

94. Partridge, S. R.; Kwong, S. M.; Firth, N.; Jensen, S. O. Mobile Genetic Elements Associated with Antimicrobial Resistance. Clin. Microbiol. Rev. 2018, 31 (4), 1–61. https://doi.org/10.1128/CMR.00088-17.

95. Rodríguez-Martínez, J. M.; Machuca, J.; Cano, M. E.; Calvo, J.; Martínez-Martínez, L.; Pascual, A. Plasmid-Mediated Quinolone Resistance: Two Decades On. Drug Resist. Updat. 2016, 29, 13–29. https://doi.org/10.1016/j.drup.2016.09.001.

96. Rozwandowicz, M.; Brouwer, M. S. M.; Fischer, J.; Wagenaar, J. A.; Gonzalez-Zorn, B.; Guerra, B.; Mevius, D. J.; Hordijk, J. Plasmids Carrying Antimicrobial Resistance Genes in Enterobacteriaceae. J. Antimicrob. Chemother. 2018, 73 (5), 1121–1137. https://doi.org/10.1093/jac/dkx488.

97. Ruiz, J. Transferable Mechanisms of Quinolone Resistance from 1998 Onward. Clin. Microbiol. Rev. 2019, 32 (4), 1–59. https://doi.org/10.1128/CMR.00007-19.

98. Roa, M. B.; Liles, V. R.; Torres, B. C.; Klinzing, D. C.; Lagamayo, E.; Navoa-Ng, J.; Daroya, M. L. G. Draft Whole-Genome Assemblies of Drugresistant Clinical Isolates of Klebsiella pneumoniae from the Philippines. Genome Announc. 2017, 5 (28), 8–10. https://doi.org/10.1128/genomeA.00475-17.

99. Peirano, G.; Lascols, C.; Hackel, M.; Hoban, D. J.; Pitout, J. D. D. Molecular Epidemiology of Enterobacteriaceae That Produce VIMs and IMPs from the SMART Surveillance Program. Diagn. Microbiol. Infect. Dis. 2014, 78 (3), 277–281. 65 https://doi.org/10.1016/j.diagmicrobio.2013.11.024.

100. Argimón, S.; Masim, M. A. L.; Gayeta, J. M.; Lagrada, M. L.; Macaranas, P. K. V.; Cohen, V.; Limas, M. T.; Espiritu, H. O.; Palarca, J. C.; Chilam, J.; Jamoralin, M. C.; Villamin, A. S.; Borlasa, J. B.; Olorosa, A. M.; Hernandez, L. F. T.; Boehme, K. D.; Jeffrey, B.; Abudahab, K.; Hufano, C. M.; Sia, S. B.; Stelling, J.; Holden, M. T. G.; Aanensen, D. M.; Carlos, C. C. Integrating Whole-Genome Sequencing within the National Antimicrobial Resistance Surveillance Program in the Philippines. Nat. Commun. 2020, 11 (1). https://doi.org/10.1038/s41467-020-16322-5.

101. Belotindos, L.; Villanueva, M.; Miguel, J.; Bwalya, P.; Harada, T.; Kawahara, R.; Nakajima, C.; Mingala, C.; Suzuki, Y. Prevalence and Characterization of QuinoloneResistance Determinants in Escherichia coli Isolated from Food-Producing Animals and Animal-Derived Food in the Philippines. Antibiotics 2021, 10 (4). https://doi.org/10.3390/antibiotics10040413.

102. Tsunoda, R.; Usui, M.; Tagaki, C.; Fukuda, A.; Boonla, C.; Anomasiri, W.; Sukpanyatham, N.; Akapelwa, M. L.; Nakajima, C.; Tamura, Y.; Suzuki, Y. Genetic Characterization of Coliform Bacterial Isolates from Environmental Water in Thailand. J. Infect. Chemother. 2021, 27 (5), 722–728. https://doi.org/10.1016/j.jiac.2020.12.023.

103. Kim, J. H.; Cho, J. K.; Kim, K. S. Prevalence and Characterization of Plasmid-Mediated Quinolone Resistance Genes in Salmonella Isolated from Poultry in Korea. Avian Pathol. 2013, 42 (3), 221–229. https://doi.org/10.1080/03079457.2013.779636.

104. Basu, S.; Mukherjee, M. Incidence and Risk of Co-Transmission of Plasmid-Mediated Quinolone Resistance and Extended-Spectrum β-Lactamase Genes in FluoroquinoloneResistant Uropathogenic Escherichia coli: A First Study from Kolkata, India. J. Glob. Antimicrob. Resist. 2018, 14, 217–223. https://doi.org/10.1016/j.jgar.2018.03.009.

105. Silva-Sánchez, J.; Cruz-Trujillo, E.; Barrios, H.; Reyna-Flores, F.; Sánchez-Pérez, A.; Garza-Ramos, U.; Morfin-Otero, R.; Rodríguez-Noriega, E.; Novales, G. M.; Solórzano, F.; Díaz, R.; Ramírez, F.; Gil, L. P.; Garza, E. Characterization of Plasmid-Mediated Quinolone Resistance (PMQR) Genes in Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae Pediatric Clinical Isolates in Mexico. PLoS One 2013, 8 (10). https://doi.org/10.1371/journal.pone.0077968.

106. Pungpian, C.; Sinwat, N.; Angkititrakul, S.; Prathan, R.; Chuanchuen, R. Presence and Transfer of Antimicrobial Resistance Determinants in Escherichia coli in Pigs, Pork, and Humans in Thailand and Lao PDR Border Provinces. Microb. Drug Resist. 2021, 27 (4), 66 571–584. https://doi.org/10.1089/mdr.2019.0438.

107. Martínez-Martínez, L.; Cano, M. E.; Rodríguez-Martínez, J. M.; Calvo, J.; Pascual, Á. Plasmid-Mediated Quinolone Resistance. Expert Rev. Anti. Infect. Ther. 2008, 6 (5), 685–711. https://doi.org/10.1586/14787210.6.5.685.

108. Wang, M.; Sahm, D. F.; Jacoby, G. A.; Zhang, Y.; Hooper, D. C. Activities of Newer Quinolones against Escherichia coli and Klebsiella pneumoniae Containing the PlasmidMediated Quinolone Resistance Determinant Qnr. Antimicrob. Agents Chemother. 2004, 48 (4), 1400–1401. https://doi.org/10.1128/AAC.48.4.1400-1401.2004.

109. Okumura, R.; Liao, C. H.; Gavin, M.; Jacoby, G. A.; Hooper, D. C. Quinolone Induction of QnrVS1 in Vibrio splendidus and Plasmid-Carried QnrS1 in Escherichia coli, a Mechanism Independent of the SOS System. Antimicrob. Agents Chemother. 2011, 55 (12), 5942–5945. https://doi.org/10.1128/AAC.05142-11.

110. Tavío, M. M.; Jacoby, G. A.; Hooper, D. C. QnrS1 Structure-Activity Relationships. J. Antimicrob. Chemother. 2014, 69 (8), 2102–2109. https://doi.org/10.1093/jac/dku102.

111. Sumrall, E. T.; Gallo, E. B.; Aboderin, A. O.; Lamikanra, A.; Okeke, I. N. Dissemination of the Transmissible Quinolone-Resistance Gene QnrS1 by IncX Plasmids in Nigeria. PLoS One 2014, 9 (10), 1–10. https://doi.org/10.1371/journal.pone.0110279.

112. Carattoli, A.; Bertini, A.; Villa, L.; Falbo, V.; Hopkins, K. L.; Threlfall, E. J. Identification of Plasmids by PCR-Based Replicon Typing. J. Microbiol. Methods 2005, 63 (3), 219–228. https://doi.org/10.1016/j.mimet.2005.03.018.

113. Van der Hoeven, N. Coexistence of Incompatible Plasmids in a Bacterial Population Living under a Feast and Famine Regime. J. Math. Biol. 1986, 24 (3), 313–325. https://doi.org/10.1007/BF00275640.

114. Changkaew, K.; Intarapuk, A.; Utrarachkij, F.; Nakajima, C.; Suthienkul, O.; Suzuki, Y. Antimicrobial Resistance, Extended-Spectrum b-Lactamase Productivity, and Class 1 Integrons in Escherichia coli from Healthy Swine. J. Food Prot. 2015, 78 (8), 1443– 1450. https://doi.org/10.4315/0362-028X.JFP-14-445.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る