リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Cold-Induced Interveinal Chlorosis and Defective Root Formation Observed in Lilium × formolongi」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Cold-Induced Interveinal Chlorosis and Defective Root Formation Observed in Lilium × formolongi

FUKASAWA, Takuya YASUI, Toshiki AKAHORI, Mako KITAMURA, Yoshikuni 信州大学

2020.09.23

概要

We tried to identify the frequency of chlorosis occurrence and defective root formation under the low temperature conditions observed in Lilium × formolongi using a cultivar ‘Green Lily Alp’(‘Alp’) as a model. First, we confirmed that ‘Alp’ plants exhibited more severe interveinal chlorosis than did L. × formolongi plants. The highest index for interveinal chlorosis in ‘Alp’ plants occurred in a study from November 2016 to April 2017 and was 4.1, compared with an index for L. × formolongi. A significant difference was observed in root dry weights, with stem roots weighing 60 mg and 260 mg and basal roots weighing 240 mg and 780 mg per plant in symptomatic and asymptomatic ‘Alp’ plants, respectively. The index for interveinal chlorosis occurrence was 0 under the control 25/10˚C (day/night) temperature treatment but 0.7 under the cooler 15–19/10˚C treatment. Total chlorophyll content and basal root dry weight were significantly lower (P<0.05) under 15–19/10˚C treatment than under the control. These results suggest that the extreme frequency and occurrence of low temperature-induced interveinal chlorosis and defective root formation in ‘Alp’ plants is induced by the low root zone temperature.

この論文で使われている画像

参考文献

1)

Imanishi, H. 2006. Yuriwotsukurikonasu (In Japanese) Noubunkyou, Tokyo.

2)

Itokawa, S. and Kitamura A. 2005. Cause of interveinal chlorosis of oriental hybrid lily and countermeasures.

Bulletin of the Kochi Agricultural Research. 14: 47–56 (In Japanese with English summary)

3)

Álvarez-Fernández, A., Paniagua P., Abadía J., and Abadía A. 2003. Effects of Fe deficiency chlorosis on yield and

fruit quality in peach (Prunus persica L. Batsch). Journal of Agricultural and Food Chemistry. 51: 5738‒5744.

4)

Álvarez-Fernández, A., Melgar J. C., Abadía J. and Abadía A. 2011. Effects of moderate and severe iron deficiency

chlorosis on fruit yield, appearance and composition in pear (Pyrus communis L.) and peach (Prunus persica (L.)

Batsch). Environmental and Experimental Botany. 71: 280‒286.

5)

Penas, E. J., Wiese R. A., Elmore R. W., Hergert G. W. and Moomaw R. S. 1990. Soybean chlorosis studies on high

pH bottomland soils. Historical Research Bulletins of the Nebraska Agricultural Experiment Station. 254.

6)

Singh, A. L., Joshi Y. C., Chaudhari V. and Zala P. V. 1990. Effects of different sources of iron and sulphur on leaf

chlorosis, nutrient uptake and yield of groundnut. Fertilizer Research. 24: 85‒96.

Low temperature response of lilium

45

7)

Deng, J., Hondo K., Kakihara F. and Kato M. 2004. Varietal differences and method of selection for hightemperature stress tolerance in geranium (Pelargonium×hortorum Bailey). Breeding Research. (Ikusyugaku-kenkyu)

6: 57‒63 (In Japanese with English abstract).

8)

Ohashi, K., Kumagai K. and Yoshikawa M. 1984. Fe deficient chlorosis in the leaves of greenhouse roses induced

by excess phosphorus in soil. Environmental Control in Biology. (Seibutsu-Kankyo-Chousetsu) 22: 47‒52 (In

Japanese).

9)

Cakmak, I., Atli M., Kaya R., Evliya H. and Marschner H. 1995. Association of high light and zinc deficiency in coldinduced leaf chlorosis in grapefruit and mandarin trees. Plant Physiology. 146: 355‒360.

10)

Chakraborty, B., Singh P. N., Shukla A. and Mishra D. S. 2012. Physiological and biochemical adjustment of iron

chlorosis affected low-chill peach cultivars supplied with different iron sources. Physiology and Molecular Biology

of Plants. 18: 141‒148.

11)

Hodgins, R. and van Huystee R. B. 1985. Chilling-induced chlorosis in maize (Zea mays). Canadian Journal of

Botany. 63: 711‒715.

12)

Miedema, P. 1982. The effects of low temperature on Zea mays. Advances in Agronomy. 35: 93‒128.

13)

Yang, M. T., Chen S. L., Lin C. Y. and Chen Y. M. 2005. Chilling stress suppresses chloroplast development and

nuclear gene expression in leaves of mung bean seedlings. Planta. 221: 374‒385.

14)

Yoshida, R., Kanno A., Sato T. and Kameya T. 1996. Cool-temperature-induced chlorosis in rice plants. Plant

Physiology. 110: 997‒1005.

15)

Bai, Y., Pan B., Charles T. C. and Smith D. L. 2002. Co-inoculation dose and root zone temperature for plant growth

promoting rhizobacteria on soybean [Glycine max (L.) Merr] grown in soil-less media. Soil Biology and

Biochemistry. 34: 1953‒1957.

16)

Barber, S. A., Mackay A. D., Kuchenbuch R. O. and Barraclough P. B. 1988. Effects of soil temperature and water

on maize root growth. Plant and Soil. 111: 267‒269.

17)

Lyr, H. and Garbe V. 1994. Influence of root temperature on growth of Pinus sylvestris, Fagus sylvatica, Tilia

cordata and Quercus robur. Trees. 9: 220‒223.

18)

Murashige, T. and Skoog F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures.

Physiologia Plantarum. 15: 473‒497.

19)

Porra, R. J., Thompson W. A. and Kriedemann P. E. 1989. Determination of accurate extinction coefficients and

simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the

concentration of chlorophyll standards by atomic absorption in spectroscopy. Biochimica et Biophysica Acta. 975:

384‒394.

20)

Brand, M. H. 1997. Shade influences plant growth, leaf color, and chlorophyll content of Kalmia latifolia L.

cultivars. Hortscience. 32: 206‒208.

21)

Dai, Y, Shen Z., Liu Y., Wang L., Hannaway D. and Lu H. 2009. Effects of shade treatments on the photosynthetic

capacity, chlorophyll fluorescence, and chlorophyll content of Tetrastigma hemsleyanum Diels et Gilg. Plant and

Soil. 65: 177‒182.

22)

Li, N., Jia J., Xia C., Liu X. and Kong X. 2013. Characterization and mapping of novel chlorophyll deficient mutant

genes in durum wheat. Breeding Science. 63: 169‒175.

23)

Spomer, L. A., Smith M. A. L. and Sawwan J. S. 1988. Rapid, nodestructive measurement of chlorophyll content in

leaves with nonuniform chlorophyll distribution. Photosynthesis Research. 16: 277‒284.

24)

Zhou, K., Ren Y., Lv J., Wang Y., Liu F., Zhou F., Zhao S., Chen S., Peng C., Zhang X., Guo X., Cheng Z., Wang J.,

Wu F., Jiang L. and Wan J. 2013. Young Leaf Chlorosis 1, a chloroplast-localized gene required for chlorophyll and

lutein accumulation during early leaf development in rice. Planta. 237: 279‒292.

25)

Belkhodja, R., Morales F., Sanz M., Abadía A. and Abadía J. 1998. Iron deficiency in peach tree: effects on leaf

chlorophyll and nutrient concentrations in flowers and leaves. Plant and Soil. 203: 257‒268.

26)

Bernier, B. and Brazeau M. 1988. Nutrient deficiency symptoms associated with sugar maple dieback and decline

in the Quebec Appalachians. Canadian Journal of Forest Research. 18: 762‒769.

27)

Hutchinson, T. C. 1968. A physiological study of Teucrium scorodonia ecotypes which differ in their susceptibility

to lime-induced chlorosis and iron-deficiency chlorosis. Plant and Soil. 28: 81‒105.

28)

Pestana, M., Varennes A., Abadía J. and Faria E. A. 2005. Differential tolerance to iron deficiency of citrus

46

信州大学農学部 AFC 報告 第18号 (2020)

rootstocks grown in nutrient solution. Scientia Horticulturae. 104: 25‒36.

29)

Shiwachi, H., Okonkwo C. C. and Asiedu R. 2004. Nutrient deficiency symptoms in yams (Dioscorea spp.). Tropical

Science. 44: 155‒162.

30)

Wei, L. C., Ocumpaugh W. R. and Loeppert R. H. 1994. Plant growth and nutrient uptake characteristics of Fedeficiency chlorosis susceptible and resistant subclovers. Plant and Soil. 165: 235‒240.

31)

Yeh, D. M., Lin L., Wright C. J. 2000. Effects of mineral nutrient deficiencies on leaf development, visual symptoms

and shoot-root ratio of Spathiphyllum. Scientia Horticulturae. 86: 223‒233.

32)

Hermans, C. and Verbruggen N. 2005. Physiological characterization of Mg deficiency in Arabidopsis thaliana.

Journal of Experimental. Botany. 56: 2153‒2161.

33)

Tagliavini, M. and Rombolá A. D. 2001. Iron deficiency and chlorosis in orchard and vineyard ecosystems.

European Journal of Agronomy. 15: 71‒92.

34)

Yu, M., Hu C. X. and Wang Y. H. 2006. Effects of molybdenum on the intermediates of chlorophyll biosynthesis in

winter cultivars under low temperature. Agricultural Science in China. 5: 670‒677.

35)

Tewari, A. K. and Tripathy B. C. 1998. Temperature-stress-induced impairment of chlorophyll biosynthetic

reactions in cucumber and wheat. Plant Physiology. 117: 851‒858.

Low temperature response of lilium

47

低温条件下におかれたユリで頻発する葉脈間クロロシスへの根の形成

不良の関与

深澤拓也1 ・安井俊樹1 ・赤堀真子2 ・北村嘉邦1

信州大学大学院総合理工学研究科

信州大学農学部

本研究では,シンテッポウユリの変異体である‘グリーンリリアルプ’

‘アルプ’

)をモデルとして,多くの

植物種で認められる低温条件下で起こるクロロシスと根の形成不良との関係を調査した.長野県の生産農家へ

の聞き取りによると,

‘アルプ’は変異前のシンテッポウユリと比較して,春に葉脈間クロロシスが多発し,

葉脈間クロロシスを発症した株では健常株と比較して,根の形成量が少ないという.本研究では,まずこの現

象を確認した.2016年11月から2017年₄月にかけて,暖房温度を10 ˚C に設定した加温ハウスで管理したシン

テッポウユリと‘アルプ’との間で葉脈間クロロシスの発生程度を比較した.その結果,調査した₃反復のす

べてでシンテッポウユリと比較して‘アルプ’で葉脈間クロロシスの発生程度が有意に高かった.特に,12月

下旬に定植し,₃月下旬にクロロシスの発生程度を評価した‘アルプ’で葉脈間クロロシスの発生程度が最も

高く,発生程度の値は約4.1であった.

‘アルプ’の健常株と葉脈間クロロシスの発生株との間で根の形成量を

比較したところ,前者と比較して後者で茎出根と底出根共に形成量が有意に少なく,健常株ではそれぞれ乾物

重が約260 mg,約780 mg であり,葉脈間クロロシスの発生株ではそれぞれ約60 mg,約240 mg であった.以

上より,春に‘アルプ’で起こる葉脈間クロロシスの多発には,低温による根の形成不良が関与すると考えた.

この仮説を検証するために,25/10 ˚C(昼/夜)および15-19 ˚C/10 ˚C(昼/夜)で‘アルプ’を管理し,葉

脈間クロロシスの発生程度,葉での総クロロフィル含量および底出根の形成量を比較した.15-19 ˚C/10 ˚C

区では25/10 ˚C 区と比較して,葉脈間クロロシスの発生程度が高く,25/10 ˚C 区では0,15-19 ˚C/10 ˚C 区で

は約0.7であった.しかし,両者の間で有意差は認められなかった.15-19 ˚C/10 ˚C 区では25/10 ˚C 区と比

較して,葉での総クロロフィル含量および底出根の形成量が有意に少なかった.25/10 ˚C 区と15‒19/10 ˚C

区のそれぞれで,葉での総クロロフィル含量はそれぞれ約646 μg・g FW‒1,約540 μg・g FW‒1 であり,底出根

の形成量はそれぞれ約2040 mg,約1080 mg であった.以上より,‘アルプ’での葉脈間クロロシスの発生には,

低温に起因する根の形成不良が関与すると考えられた.また,多くの植物種で認められる低温条件下でのクロ

ロシスの発生は,根の形成不良に起因することが強く示唆された.

キーワード:環境要因,‘ グリーンリリアルプ ’,クロロフィル含量,根圏温度,冬季

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る