リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Effects of sulfadoxine-pyrimethamine resistance on the effectiveness of policies for preventive treatment of malaria in Africa: a systematic analysis of national trends」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Effects of sulfadoxine-pyrimethamine resistance on the effectiveness of policies for preventive treatment of malaria in Africa: a systematic analysis of national trends

フロリアノ, エード アミモ 東京大学 DOI:10.15083/0002007092

2023.03.24

概要

[課程-2]
審査の結果の要旨
氏名フロリアノ エード アミモ

This is the first systematic analysis of nationwide standardised levels of P. falciparum
resistance to sulfadoxine-pyrimethamine (SP). The evidence provided here allows
comparability of trends across time and locations and helps policymakers understand
the policy impact of the WHO frameworks at country level.
My metrics illustrate a gradual reduction of mid-level resistance to SP in eastern Africa
since 2010, as well as increasing levels in central Africa and a largely stable drug
efficacy in western and southern Africa in the period between 2000 and 2020. However,
there is a continued reduction of drug efficacy on the continent, driven by increasing
levels of high-level resistance, mostly in eastern Africa. Using my metrics in
conjunction with the current WHO protocols, I identified countries where continued
implementation of SP-based malaria control policies for maternal and child health
outcomes is warranted, as well as regions where these policies are no longer effective. I
detected areas where a careful monitoring of resistance levels is critical. I also
identified areas with limited coverage of patient data for resistance tracking in the
regions where the largest share of P. falciparum infection is concentrated. This includes
Nigeria, the Democratic Republic of the Congo, Mozambique, and Uganda, which alone
account for 45% of the global burden of malaria cases.
Therefore, to realise the global agenda to end the epidemic of malaria by 2030 in the
context of the Sustainable Development Goals target 3.3, it is essential to strengthen
health systems capacity to monitor resistance at subnational level across the
endemicity spectrum on the continent.

よって本論文は博士( 保健 学 )の学位請求論文として合格と認められる。

この論文で使われている画像

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

Adeel AA, Elnour FA, Elmardi KA, et al. High efficacy of artemether-lumefantrine and declining

efficacy of artesunate + sulfadoxine-pyrimethamine against Plasmodium falciparum in Sudan

(2010-2015): evidence from in vivo and molecular marker studies. Malar J 2016; 15(1): 285.

Juma DW, Muiruri P, Yuhas K, et al. The prevalence and antifolate drug resistance profiles of

Plasmodium falciparum in study participants randomized to discontinue or continue cotrimoxazole

prophylaxis. PLoS Negl Trop Dis 2019; 13(3): e0007223.

Abugri J, Ansah F, Asante KP, Opoku CN, Amenga-Etego LA, Awandare GA. Prevalence of

chloroquine and antifolate drug resistance alleles in Plasmodium falciparum clinical isolates from

three areas in Ghana. AAS Open Res 2018; 1: 1.

Gupta H, Macete E, Bulo H, et al. Drug-resistant polymorphisms and copy numbers in Plasmodium

falciparum, Mozambique, 2015. Emerg Infect Dis 2018; 24(1): 40-8.

IE AE, Elbashir MI, Khalil IF, Alifrangis M, Giha HA. The efficacy of sulfadoxine-pyrimethamine

alone and in combination with chloroquine for malaria treatment in rural eastern Sudan: the

interrelation between resistance, age and gametocytogenesis. Trop Med Int Health 2006; 11(5):

604-12.

Al-Saai S, Kheir A, Abdel-Muhsin AM, et al. Distinct haplotypes of dhfr and dhps among

Plasmodium falciparum isolates in an area of high level of sulfadoxine-pyrimethamine (SP)

resistance in eastern Sudan. Infect Genet Evol 2009; 9(5): 778-83.

Ravenhall M, Benavente ED, Mipando M, et al. Characterizing the impact of sustained

sulfadoxine/pyrimethamine use upon the Plasmodium falciparum population in Malawi. Malar J

2016; 15(1): 575.

Ngondi JM, Ishengoma DS, Doctor SM, et al. Surveillance for sulfadoxine-pyrimethamine resistant

malaria parasites in the Lake and Southern Zones, Tanzania, using pooling and next-generation

sequencing. Malar J 2017; 16(1): 236.

Juma DW, Omondi AA, Ingasia L, et al. Trends in drug resistance codons in Plasmodium

falciparum dihydrofolate reductase and dihydropteroate synthase genes in Kenyan parasites from

2008 to 2012. Malar J 2014; 13: 250.

Sridaran S, McClintock SK, Syphard LM, Herman KM, Barnwell JW, Udhayakumar V. Anti-folate

drug resistance in Africa: meta-analysis of reported dihydrofolate reductase (dhfr) and

dihydropteroate synthase (dhps) mutant genotype frequencies in African Plasmodium falciparum

parasite populations. Malar J 2010; 9(1): 247.

World Health Organization. WHO evidence review group on intermittent preventive treatment

(IPT) of malaria in pregnancy. Geneva: World Health Organization, 2013.

World Health Organization. Intermittent preventive treatment in infants (IPTi). Geneva: World

Health Organization, 2017.

World Health Organization. WHO policy recommendation on intermittent preventive treatment

during infancy with sulphadoxine-pyrimethamine (SP-IPTi) for Plasmodium falciparum malaria

control in Africa. Geneva: World Health Organization, 2010.

World Health Organization. Seasonal malaria chemoprevention with sulfadoxine–pyrimethamine

plus amodiaquine in children: a field guide. Geneva: World Health Organization, 2013.

Omar SA, Adagu IS, Warhurst DC. Can pretreatment screening for dhps and dhfr point mutations

in Plasmodium falciparum infections be used to predict sulfadoxine-pyrimethamine treatment

failure? Trans R Soc Trop Med Hyg 2001; 95(3): 315-9.

Bishop CM. Variational principal components. ICANN 99 (Conf Publ No 470); 1999 Sept 7-10;

Edinburgh: IEE; 1999. p. 509-14.

179

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Blei DM, Kucukelbir A, McAuliffe JD. Variational inference: a review for statisticians. J Am Stat

Assoc 2017; 112(518): 859-77.

Hay SI, Guerra CA, Gething PW, et al. A world malaria map: Plasmodium falciparum endemicity

in 2007. PLoS Med 2009; 6(3): e1000048.

Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the

sample size, median, range and/or interquartile range. BMC Med Res Methodol 2014; 14(1): 135.

Wang L. Bayesian principal component regression with data-driven component selection. J Appl

Stat 2012; 39(6): 1177-89.

Lin Z, Yang C, Zhu Y, et al. Simultaneous dimension reduction and adjustment for confounding

variation. Proc Natl Acad Sci U S A 2016; 113(51): 14662-7.

Stacklies W, Redestig H, Scholz M, Walther D, Selbig J. pcaMethods--a bioconductor package

providing PCA methods for incomplete data. Bioinformatics 2007; 23(9): 1164-7.

Rubin DB. The use of propensity scores in applied Bayesian inference. Bayesian statistics 2.

Amsterdam; New York: North-Holland/Elsevier; 1985.

Chipman HA, George EI, McCulloch RE. BART: Bayesian additive regression trees. Ann Appl Stat

2010; 4(1): 266-98.

Linero AR. A review of tree-based Bayesian methods. Commun Stat Appl Methods 2017; 24(6):

543-59.

Austin PC. Assessing the performance of the generalized propensity score for estimating the effect

of quantitative or continuous exposures on binary outcomes. Stat Med 2018; 37(11): 1874-94.

McCaffrey DF, Ridgeway G, Morral AR. Propensity score estimation with boosted regression for

evaluating causal effects in observational studies. Psychol Methods 2004; 9(4): 403-25.

McCaffrey DF, Griffin BA, Almirall D, Slaughter ME, Ramchand R, Burgette LF. A tutorial on

propensity score estimation for multiple treatments using generalized boosted models. Stat Med

2013; 32(19): 3388-414.

Harder VS, Stuart EA, Anthony JC. Propensity score techniques and the assessment of measured

covariate balance to test causal associations in psychological research. Psychol Methods 2010;

15(3): 234-49.

Bleich J, Kapelner A, George EI, Jensen ST. Variable selection for BART: an application to gene

regulation. Ann Appl Stat 2014; 8(3): 1750-81.

Rasmussen C, Williams C. Gaussian processes for machine learning. Cambridge: MIT Press; 2006.

Gelman A, Pardoe I. 2. Average predictive comparisons for models with nonlinearity, interactions,

and variance components. Sociol Methodol 2007; 37(1): 23-51.

Muller CJ, MacLehose RF. Estimating predicted probabilities from logistic regression: different

methods correspond to different target populations. Int J Epidemiol 2014; 43(3): 962-70.

Bhatt S, Cameron E, Flaxman SR, Weiss DJ, Smith DL, Gething PW. Improved prediction

accuracy for disease risk mapping using Gaussian process stacked generalization. J R Soc Interface

2017; 14(134): 20170520.

Gelman A, Hill J. Data analysis using regression and multilevel/hierarchical models. New York:

Cambridge university press; 2006.

Benjamin DJ, Berger JO, Johannesson M, et al. Redefine statistical significance. Nat Hum Behav

2018; 2(1): 6.

Carpenter B, Gelman A, Hoffman MD, et al. Stan: a probabilistic programming language. J Stat

Softw 2017; 76(1): 1-32.

R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for

Statistical Computing; 2018.

Vehtari A, Gelman A, Gabry J. Practical Bayesian model evaluation using leave-one-out crossvalidation and WAIC. Stat Comput 2016; 27(5): 1413-32.

Watanabe S. A widely applicable Bayesian information criterion. J Mach Learn Res 2013; 14(Mar):

867-97.

180

41.

42.

43.

Brown LD, Cai TT, DasGupta A. Interval estimation for a binomial proportion. Stat Sci 2001;

16(2): 101-17.

Brown LD, Cai TT, Dasgupta A. Confidence intervals for a binomial proportion and asymptotic

expansions. Ann Stat 2002; 30(1): 160-201.

Brown LD, Cai TT, DasGupta A. Interval estimation in exponential families. Stat Sin 2003; 13(1):

19-49.

181

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る