リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Progenitor Constraint with Circumstellar Material for the Magnetar-hosting Supernova Remnant RCW 103」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Progenitor Constraint with Circumstellar Material for the Magnetar-hosting Supernova Remnant RCW 103

Narita, Takuto Uchida, Hiroyuki Yoshida, Takashi Tanaka, Takaaki Tsuru, Takeshi Go 京都大学 DOI:10.3847/1538-4357/acccf6

2023.06.20

概要

Stellar winds blown out from massive stars (≳10 M⊙) contain precious information on the progenitor itself, and in this context the most important elements are carbon (C), nitrogen (N), and oxygen (O), which are produced by the CNO cycle in the H-burning layer. Although their X-ray fluorescence lines are expected to be detected in swept-up shock-heated circumstellar materials in supernova remnants, those of C and N have been particularly difficult to detect so far. Here, we present high-resolution spectroscopy of the young magnetar-hosting supernova remnant RCW 103 with the Reflection Grating Spectrometer on board XMM-Newton and report on the detection of the N vii Lyα (0.50 keV) line for the first time. By comparing the obtained abundance ratio of N to O (N/O = 3.8 ± 0.1) with various stellar evolution models, we show that the progenitor of RCW 103 is likely to have a low mass (10–12 M⊙) and medium rotation velocity (≲100 km s⁻¹). The results also rule out the possibility of dynamo effects in massive (≥35 M⊙) stars as a mechanism for forming the associated magnetar 1E 161348−5055. Our method is useful for estimating various progenitor parameters for future missions with microcalorimeters such as XRISM and Athena.

この論文で使われている画像

参考文献

Arnaud, K. A. 1996, in ASP Conf. Ser. 101, Astronomical Data Analysis

Software and Systems V, ed. G. H. Jacoby & J. Barnes (San Francisco, CA:

ASP), 17

Barret, D., Lam Trong, T., den Herder, J.-W., et al. 2018, Proc. SPIE, 10699,

106991G

Berghöfer, T. W., Bowyer, S., Lieu, R., & Knude, J. 1998, ApJ, 500, 838

Braun, C., Safi-Harb, S., & Fryer, C. L. 2019, MNRAS, 489, 4444

Carter, L. M., Dickel, J. R., & Bomans, D. J. 1997, PASP, 109, 990

Castor, J., McCray, R., & Weaver, R. 1975, ApJL, 200, L107

are thought to have low-mass progenitors (Zhou et al. 2019) and

many OB stars in our Galaxy have the same velocity as the

progenitor of RCW 103 (Daflon et al. 2007). Therefore, the

progenitor of RCW 103 is thought to have similar physical

characteristics to the majority of OB stars in our Galaxy except

for the extremely long period of 1E 161348−5055.

The Astrophysical Journal, 950:137 (9pp), 2023 June 20

Narita et al.

Mauron, N., & Josselin, E. 2011, A&A, 526, A156

O’Connor, E., & Ott, C. D. 2011, ApJ, 730, 70

Okon, H., Tanaka, T., Uchida, H., et al. 2020, ApJ, 890, 62

Olausen, S. A., & Kaspi, V. M. 2014, ApJS, 212, 6

Owocki, S. 2004, in EAS Publications Series, ed. M. Heydari-Malayeri,

P. Stee, & J. P. Zahn, Vol. 13 (Les Ulis: EDP Sciences), 163

Przybilla, N., Firnstein, M., Nieva, M. F., Meynet, G., & Maeder, A. 2010,

A&A, 517, A38

Reynoso, E. M., Green, A. J., Johnston, S., et al. 2004, PASA, 21, 82

Sapienza, V., Miceli, M., Bamba, A., et al. 2022, ApJ, 935, 152

Smartt, S. J. 2009, ARA&A, 47, 63

Sukhbold, T., Ertl, T., Woosley, S. E., Brown, J. M., & Janka, H. T. 2016, ApJ,

821, 38

Takahashi, K., Umeda, H., & Yoshida, T. 2014, ApJ, 794, 40

Takahashi, K., Yoshida, T., & Umeda, H. 2013, ApJ, 771, 28

Takahashi, K., Yoshida, T., & Umeda, H. 2018, ApJ, 857, 111

Takahashi, K., Yoshida, T., Umeda, H., Sumiyoshi, K., & Yamada, S. 2016,

MNRAS, 456, 1320

Tashiro, M., Maejima, H., Toda, K., et al. 2018, Proc. SPIE, 10699, 1069922

Thompson, C., & Duncan, R. C. 1993, ApJ, 408, 194

Uchida, H., Katsuda, S., Tsunemi, H., et al. 2019, ApJ, 871, 234

Vink, J., & Kuiper, L. 2006, MNRAS Lett., 370, L14

Wachter, K., Leach, R., & Kellogg, E. 1979, ApJ, 230, 274

Weaver, R., McCray, R., Castor, J., Shapiro, P., & Moore, R. 1977, ApJ,

218, 377

White, C. J., Burrows, A., Coleman, M. S. B., & Vartanyan, D. 2022, ApJ,

926, 111

Wilms, J., Allen, A., & McCray, R. 2000, ApJ, 542, 914

Yoshida, T., Takiwaki, T., Kotake, K., et al. 2019, ApJ, 881, 16

Zhou, P., Vink, J., Safi-Harb, S., & Miceli, M. 2019, A&A, 629, A51

Chen, Y., Zhou, P., & Chu, Y.-H. 2013, ApJL, 769, L16

Chevalier, R. A. 1999, ApJ, 511, 798

Chevalier, R. A. 2005, ApJ, 619, 839

Chevalier, R. A., & Emmering, R. T. 1989, ApJL, 342, L75

Chevalier, R. A., & Imamura, J. N. 1983, ApJ, 270, 554

Daflon, S., Cunha, K., de Araújo, F. X., Wolff, S., & Przybilla, N. 2007, AJ,

134, 1570

De Luca, A., Caraveo, P. A., Mereghetti, S., Tiengo, A., & Bignami, G. F. 2006,

Sci, 313, 814

Dwarkadas, V. V. 2005, ApJ, 630, 892

Dwarkadas, V. V. 2007, ApJ, 667, 226

Ekström, S., Georgy, C., Eggenberger, P., et al. 2012, A&A, 537, A146

Ferrario, L., & Wickramasinghe, D. 2006, MNRAS, 367, 1323

Ferrario, L., & Wickramasinghe, D. 2008, MNRAS Lett., 389, L66

Frank, K. A., Burrows, D. N., & Park, S. 2015, ApJ, 810, 113

Gaensler, B. M., McClure-Griffiths, N. M., Oey, M. S., et al. 2005, ApJL,

620, L95

Gaskin, J. A., Swartz, D. A., Vikhlinin, A., et al. 2019, JATIS, 5, 021001

Goldman, S. R., van Loon, J. T., Zijlstra, A. A., et al. 2017, MNRAS, 465, 403

Heger, A., Langer, N., & Woosley, S. E. 2000, ApJ, 528, 368

Heger, A., Woosley, S. E., & Spruit, H. C. 2005, ApJ, 626, 350

Higgins, E. R., & Vink, J. S. 2019, A&A, 622, A50

Hu, R.-Y., & Lou, Y.-Q. 2009, MNRAS, 396, 878

Kasuga, T., Vink, J., Katsuda, S., et al. 2021, ApJ, 915, 42

Katsuda, S., Takiwaki, T., Tominaga, N., Moriya, T. J., & Nakamura, K. 2018,

ApJ, 863, 127

Luo, T., Umeda, H., Yoshida, T., & Takahashi, K. 2022, ApJ, 927, 115

Maeder, A. 1983, A&A, 120, 113

Maeder, A., Przybilla, N., Nieva, M.-F., et al. 2014, A&A, 565, A39

Masada, Y., Takiwaki, T., & Kotake, K. 2022, ApJ, 924, 75

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る