リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Giant multiple caloric effects in charge transition ferrimagnet」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Giant multiple caloric effects in charge transition ferrimagnet

Kosugi, Yoshihisa Goto, Masato Tan, Zhenhong Kan, Daisuke Isobe, Masahiko Yoshii, Kenji Mizumaki, Masaichiro Fujita, Asaya Takagi, Hidenori Shimakawa, Yuichi 京都大学 DOI:10.1038/s41598-021-91888-8

2021

概要

Caloric effects of solids can provide us with innovative refrigeration systems more efficient and environment-friendly than the widely-used conventional vapor-compression cooling systems. Exploring novel caloric materials is challenging but critically important in developing future technologies. Here we discovered that the quadruple perovskite structure ferrimagnet BiCu₃Cr₄O₁₂ shows large multiple caloric effects at the first-order charge transition occurring around 190 K. Large latent heat and the corresponding isothermal entropy change, 28.2 J K⁻¹ kg⁻¹, can be utilized by applying both magnetic fields (a magnetocaloric effect) and pressure (a barocaloric effect). Adiabatic temperature changes reach 3.9 K for the 50 kOe magnetic field and 4.8 K for the 4.9 kbar pressure, and thus highly efficient thermal controls are achieved in multiple ways.

この論文で使われている画像

参考文献

1. Omer, A. M. Energy, environment and sustainable development. Renew. Sustain. Energy Rev. 12, 2265–2300 (2008).

2. Calm, J. M. The next generation of refrigerants—Historical review, considerations, and outlook. Int. J. Refrig. 31, 1123–1133 (2008).

3. The Importance of Energy Efficiency in the Refrigeration and Heat Pump Sectors. United Nations Environment Programme, Briefing

Note A (2018).

4. Gschneidner, A., Pecharsky, V. K. & Tsokol, A. O. Recent developments in magnetocaloric materials. Reports Prog. Phys. 68,

1479–1539 (2005).

5. Shen, B. G., Sun, J. R., Hu, F. X., Zhang, H. W. & Cheng, Z. H. Recent progress in exploring magnetocaloric materials. Adv. Mater.

21, 4545–4564 (2009).

6. Valant, M. Electrocaloric materials for future solid-state refrigeration technologies. Prog. Mater. Sci. 57, 980–1009 (2012).

7. Fähler, S. et al. Caloric effects in ferroic materials: New concepts for cooling. Energy Technol. 14, 10–19 (2012).

8. Moya, X., Kar-Narayan, S. & Mathur, N. D. Caloric materials near ferroic phase transitions. Nat. Mater. 13, 439–450 (2014).

9. Mañosa, L. & Planes, A. Materials with giant mechanocaloric effects: Cooling by strength. Adv. Mater. 29, 1603607 (2017).

10. Franco, V., Blázquez, J. S., Ingale, B. & Conde, A. The magnetocaloric effect and magnetic refrigeration near room temperature:

Materials and models. Annu. Rev. Mater. Res. 42, 305–342 (2012).

11. Brown, G. V. Magnetic heat pumping near room temperature. J. Appl. Phys. 47, 3673–3680 (1976).

12. Mizumaki, M. et al. Magnetocaloric effect of field-induced ferromagnet B

­ aFeO3. J. Appl. Phys. 114, 073901 (2013).

13. Pecharsky, V. K. & Gschneidner, K. A. Giant magnetocaloric effect in ­Gd5(Si2Ge2). Phys. Rev. Lett. 78, 4494–4497 (1997).

14. Stern-Taulats, E. et al. Barocaloric and magnetocaloric effects in F

­ e49Rh51. Phys. Rev. B 89, 214105 (2014).

15. Fujita, A., Fujieda, S., Hasegawa, Y. & Fukamichi, K. Itinerant-electron metamagnetic transition and large magnetocaloric effects

in La(FexSi1−x)13 compounds and their hydrides. Phys. Rev. B 67, 104416 (2003).

16. Numazawa, T., Kamiya, K., Utaki, T. & Matsumoto, K. Magnetic refrigerator for hydrogen liquefaction. Cryogenics (Guildf) 62,

185 (2014).

17. Park, J., Jeong, S. & Park, I. Development and parametric study of the convection-type stationary adiabatic demagnetization

refrigerator (ADR) for hydrogen re-condensation. Cryogenics (Guildf) 71, 82 (2015).

18. McMichae, R. D., Ritter, J. J. & Shull, R. D. Enhanced magnetocaloric effect in G

­ d3Ga5−xFexO12. J. Appl. Phys. 733, 6946 (2006).

19. Li, L. et al. Magnetic properties and excellent cryogenic magnetocaloric performances in B-site ordered RE2ZnMnO6 (RE = Gd,

Dy and Ho) perovskites. Acta Mater. 194, 354 (2020).

20. Li, L. & Yan, M. Recent progresses in exploring the rare earth based intermetallic compounds for cryogenic magnetic refrigeration.

J. Alloys Compd. 823, 153810 (2020).

21. Moya, X. et al. Giant electrocaloric strength in single-crystal B

­ aTiO3. Adv. Mater. 25, 1360–1365 (2013).

22. Mischenko, A. S., Zhang, Q., Scott, J. F., Whatmore, R. W. & Mathur, N. D. Giant electrocaloric effect in thin-film ­PbZr0.95Ti0.05O3.

Science (80–.) 311, 1270 (2006).

23. Nair, B. et al. Large electrocaloric effects in oxide multilayer capacitors over a wide temperature range. Nature 575, 468–472 (2019).

24. Matsunami, D. & Fujita, A. Electrocaloric effect of metal-insulator transition in ­VO2. Appl. Phys. Lett. 106, 042901 (2015).

25. Mañosa, L. et al. Giant solid-state barocaloric effect in the Ni–Mn–In magnetic shape-memory alloy. Nat. Mater. 9, 478–481 (2010).

26. Stern-Taulats, E. et al. Inverse barocaloric effects in ferroelectric B

­ aTiO3 ceramics. APL Mater. 4, 091102 (2016).

27. Mikhaleva, E. A. et al. Caloric characteristics of P

­ bTiO3 in the temperature range of the ferroelectric phase transition. Phys. Solid

State 54, 1832–1840 (2012).

28. Stern-Taulats, E. et al. Multicaloric materials and effects. MRS Bull. 43, 295–299 (2018).

29. Czernuszewicz, A., Kaleta, J. & Lewandowski, D. Multicaloric effect: Toward a breakthrough in cooling technology. Energy Convers.

Manag. 178, 335–342 (2018).

30. Vasil’ev, A. & Yolkova, O. New functional materials AC3B4O12. Low Temp. Phys. 33, 895 (2007).

31. Shimakawa, Y. A-site-ordered perovskites with intriguing physical properties. Inorg. Chem. 47, 8562–8570 (2008).

32. Etter, M. et al. Charge disproportionation of mixed-valent Cr triggered by Bi lone-pair effect in the A-site-ordered perovskite

­BiCu3Cr4O12. Phys. Rev. B 97, 195111 (2018).

33. Long, Y. W. et al. Temperature-induced A-B intersite charge transfer in an A-site-ordered ­LaCu3Fe4O12 perovskite. Nature 458,

60–63 (2009).

Scientific Reports |

(2021) 11:12682 |

https://doi.org/10.1038/s41598-021-91888-8

Vol.:(0123456789)

www.nature.com/scientificreports/

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

34. Long, Y. et al. Intermetallic charge transfer in A-site-ordered double perovskite B

­ iCu3Fe4O12. Inorg. Chem. 48, 8489 (2009).

35. Shimakawa, Y. Crystal and magnetic structures of ­CaCu3Fe4O12 and ­LaCu3Fe4O12: Distinct charge transitions of unusual high

valence Fe. J. Phys. D Appl. Phys. 48, 504006 (2015).

36. Shimakawa, Y. & Mizumaki, M. Multiple magnetic interactions in A-site-ordered perovskite-structure oxides. J. Phys. Condens.

Matter 26, 473203 (2014).

37. Kosugi, Y. et al. Colossal barocaloric effect by large latent heat produced by first-order intersite-charge-transfer transition. Adv.

Funct. Mater. https://​doi.​org/​10.​1002/​adfm.​20200​9476 (2021).

38. Lashley, J. C. et al. Critical examination of heat capacity measurements made on a quantum design physical property measurement

system. Cryogenics (Guildf) 43, 369–378 (2003).

39. Giguére, A. et al. Direct measurement of the “giant” adiabatic temperature change in G

­ d5Si2Ge2s. Phys. Rev. Lett. 83, 2262–2265

(1999).

40. Liu, G. J. et al. Determination of the entropy changes in the compounds with a first-order magnetic transition. Appl. Phys. Lett.

90, 1–4 (2007).

41. Provenzano, V., Shapiro, A. J. & Shull, R. D. Reduction of hysteresis losses in the magnetic refrigerant ­Gd5Ge2Si2 by the addition

of iron. Nature 429, 853 (2004).

42. Zhang, H. et al. Reduction of hysteresis loss and large magnetocaloric effect in the C- and H-doped La(Fe, Si)13 compounds around

room temperature. J. Appl. Phys. 111, 07A909 (2012).

43. Stern-Taulats, E. et al. Giant multicaloric response of bulk ­Fe49Rh51. Phys. Rev. B 95, 104424 (2017).

44. Izumi, F. & Momma, K. Three-dimensional visualization in powder diffraction. Solid State Phenom. 130, 15–20 (2007).

45. Momma, K. & Izumi, F. VESTA: A three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 41, 653–658 (2008).

46. Matsunami, D., Fujita, A., Takenaka, K. & Kano, M. Giant barocaloric effect enhanced by the frustration of the antiferromagnetic

phase in M

­ n3GaN. Nat. Mater. 14, 73–78 (2015).

Acknowledgements

We thank Shoubao Zhang and Takashi Saito for discussion, and Shogo Kawaguchi for help in synchrotron X-ray

diffraction measurements. The synchrotron radiation experiments were performed at the Japan Synchrotron

Radiation Research Institute, Japan (Proposal Nos. 2019B1757, 2020A1137 and 2020A1671). This work was partly

supported by Grants-in-Aid for Scientific Research (Nos. 24540362, 19K15585, 19H05823, 19K22073, 20K20547,

20H02829, and 20H00397) and by grants for the Integrated Research Consortium on Chemical Sciences and the

International Collaborative Research Program of Institute for Chemical Research in Kyoto University from the

Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan. This work was also supported

by the Japan Society for the Promotion of Science Core-to-Core Program (A) Advanced Research Networks and

by the Yazaki Memorial Foundation for Science and Technology.

Author contributions

Y.K. and Y.S. conceived the idea and initiated the project. D.K., A.F., H.T., and Y.S. supervised the project. Y.K.,

M.G., Z.T., and M.I. prepared the samples and performed structure analysis as well as magnetic and property

measurements. Y.K., M.G., K.Y., M.M., A.F., and Y.S. measured caloric effects. All authors discussed the experimental data and wrote the manuscript.

Competing interests The authors declare no competing interests.

Additional information

Supplementary Information The online version contains supplementary material available at https://​doi.​org/​

10.​1038/​s41598-​021-​91888-8.

Correspondence and requests for materials should be addressed to Y.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and

institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International

License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons licence, and indicate if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the

material. If material is not included in the article’s Creative Commons licence and your intended use is not

permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2021

Scientific Reports |

Vol:.(1234567890)

(2021) 11:12682 |

https://doi.org/10.1038/s41598-021-91888-8

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る