リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Living in the shadows: Gastrodia orchids lack functional leaves and open flowers」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Living in the shadows: Gastrodia orchids lack functional leaves and open flowers

Suetsugu, Kenji 末次, 健司 スエツグ, ケンジ 神戸大学

2022.09

概要

Non-photosynthetic plants dependent on fungi have long fascinated botanists and mycologists. The genus Gastrodia (Orchidaceae) contains more than 100 achlorophyllous species, including some species recently discovered in Japan and Taiwan which produce only closed self-pollinating flowers. To date, Gastrodia is probably the only genus containing species with only closed flowers, which has been verified by a decade of monitoring hundreds of individuals. Here, the unique characteristics of the genus Gastrodia have been reviewed, emphasizing the reproductive biology of these newly described species that neither photosynthesize nor bloom. Investigation of such species that scarcely resemble other plants may paradoxically enhance our understanding of plants more broadly.

この論文で使われている画像

参考文献

Bidartondo, M. I. (2005). The evolutionary ecology of myco-heterotrophy. New Phytologist, 167(2), 335–352. https://doi.org/10.1111/j.1469- 8137.2005.01429.x

Culley, T. M., & Klooster, M. R. (2007). The cleistogamous breeding sys- tem: A review of its frequency, evolution, and ecology in angiosperms. The Botanical Review, 73(1), 1–30. https://doi.org/10.1663/0006-8101

Darwin, C. (1877). The different forms of flowers on plants of the same spe- cies. Appleton.

Herrera, C. M. (1995). Floral biology, microclimate, and pollination by ecto- thermic bees in an early-blooming herb. Ecology, 76(1), 218–228. https://doi.org/10.2307/1940644

Herrera, C. M. (1997). Thermal biology and foraging responses of insect pollinators to the forest floor irradiance mosaic. Oikos, 78(3), 601–611. https://doi.org/10.2307/3545623

Hsu, T. C., Chung, S. W., & Kuo, C. M. (2012). Supplements to the orchid flora of Taiwan (vi). Taiwania, 57(3), 271–277.

Hu, A. Q., Hsu, T. C., & Liu, Y. (2014). Gastrodia damingshanensis (Orchidaceae: Epidendroideae): A new mycoheterotrophic orchid from China. Phytotaxa, 175(5), 256–262. https://doi.org/10.11646/ phytotaxa.175.5.3

Jamieson, I. G. (2011). Founder effects, inbreeding, and loss of genetic diversity in four avian reintroduction programs. Conservation Biology, 25(1), 115–123. https://doi.org/10.1111/j.1523-1739.2010.01574.x

Kinoshita, A., Ogura-Tsujita, Y., Umata, I., Sato, H., Hashimoto, T., & Yukawa, T. (2016). How do fungal partners affect the evolution and habitat preferences of mycoheterotrophic plants? A case study in Gastrodia. American Journal of Botany, 103(2), 207–220. https://doi. org/10.3732/ajb.1500082

Kishikawa, K., Suetsugu, K., Kyogoku, D., Ogaki, K., Iga, D., Shutoh, K., Isagi, Y., & Kaneko, S. (2019). Development of microsatellite markers for the completely cleistogamous species Gastrodia takeshimensis (Orchidaceae) that are transferable to its chasmogamous sister G. nipponica. Genes & Genetic Systems, 94(2), 95–98. https://doi.org/ 10.1266/ggs.18-00057

Leake, J. R. (1994). The biology of myco-heterotrophic (‘saprophytic’) plants. New Phytologist, 127(2), 171–216. https://doi.org/10.1111/j. 1469-8137.1994.tb04272.x

Liu, Q., Ya, J.-D., Wu, X.-F., Shao, B.-Y., Chi, K.-B., Zheng, H.-L., Li, J.-W., & Jin, X.-H. (2021). New taxa of tribe Gastrodieae (Epidendroideae, Orchidaceae) from Yunnan, China and its conservation implication. Plant Diversity, 43(5), 420–425. https://doi.org/10.1016/j.pld.2021. 06.001

Martos, F., Cariou, M. L., Pailler, T., Fournel, J., Bytebier, B., & Johnson, S. D. (2015). Chemical and morphological filters in a special- ized floral mimicry system. New Phytologist, 207(1), 225–234. https:// doi.org/10.1111/nph.13350

Martos, F., Dulormne, M., Pailler, T., Bonfante, P., Faccio, A., Fournel, J., Dubois, M. P., & Selosse, M. A. (2009). Independent recruitment of saprotrophic fungi as mycorrhizal partners by tropical achlorophyllous orchids. New Phytologist, 184(3), 668–681. https://doi.org/10.1111/j. 1469-8137.2009.02987.x

Merckx, V., & Bidartondo, M. I. (2008). Breakdown and delayed cos- peciation in the arbuscular mycorrhizal mutualism. Proceedings of the Royal Society B: Biological Sciences, 275(1638), 1029–1035. https:// doi.org/10.1098/rspb.2007.1622

Nilsson, L. (1992). Orchid pollination biology. Trends in Ecology and Evolution, 7(8), 255–259. https://doi.org/10.1016/0169-5347(92)90170-G

Ogaki, K., Suetsugu, K., Kishikawa, K., Kyogoku, D., Shutoh, K., Isagi, Y., & Kaneko, S. (2019). New microsatellite markers recognize differences in tandem repeats among four related Gastrodia species (Orchidaceae). Genes & Genetic Systems, 94(5), 225–229. https://doi.org/10.1266/ ggs.19-00025

Ogura-Tsujita, Y., Gebauer, G., Hashimoto, T., Umata, H., & Yukawa, T. (2009). Evidence for novel and specialized mycorrhizal parasitism: The orchid Gastrodia confusa gains carbon from saprotrophic Mycena. Pro- ceedings of the Royal Society B-Biological Sciences, 276(1657), 761–767. https://doi.org/10.1098/rspb.2008.1225

Pannell, J. R. (2009). On the problems of a closed marriage: Celebrating Darwin 200. Biology Letters, 5(3), 332–335. https://doi.org/10.1098/ rsbl.2009.0142

Rundle, H. D., & Nosil, P. (2005). Ecological speciation. Ecology Letters, 8(3), 336–352. https://doi.org/10.1111/j.1461-0248.2004.00715.x

Suetsugu, K. (2013a). Autogamous fruit set in a mycoheterotrophic orchid Cyrtosia septentrionalis. Plant Systematics and Evolution, 299(3), 481–486. https://doi.org/10.1007/s00606-012-0736-z

Suetsugu, K. (2013b). Gastrodia takeshimensis (Orchidaceae), a new mycoheterotrophic species from Japan. Annales Botanici Fennici, 50(3), 375–378. https://doi.org/10.5735/085.050.0613

Suetsugu, K. (2014). Gastrodia flexistyloides (Orchidaceae), a new mycoheterotrophic plant with complete cleistogamy from Japan. Phytotaxa, 175(5), 270. https://doi.org/10.11646/phytotaxa.175.5.5

Suetsugu, K. (2015). Autonomous self-pollination and insect visitors in par- tially and fully mycoheterotrophic species of Cymbidium (Orchidaceae). Journal of Plant Research, 128(1), 115–125. https://doi.org/10.1007/ s10265-014-0669-4

Suetsugu, K. (2016). Gastrodia kuroshimensis (Orchidaceae), a new mycoheterotrophic and complete cleistogamous plant from Japan. Phytotaxa, 278(3), 265–272. https://doi.org/10.11646/phytotaxa. 278.3.6

Suetsugu, K. (2017a). Range extensions for two mycoheterotrophic orchids, Gastrodia takeshimensis and G. flexistyloides (Orchidaceae), outside their type locality. Acta Phytotaxonomica et Geobotanica, 68(1), 53–57.

Suetsugu, K. (2017b). Two new species of Gastrodia (Gastrodieae, Epidendroideae, Orchidaceae) from Okinawa Island, Ryukyu Islands, Japan. Phytotaxa, 302(3), 251. https://doi.org/10.11646/phytotaxa. 302.3.4

Suetsugu, K. (2018). Achlorophyllous orchid can utilize fungi not only for nutritional demands but also pollinator attraction. Ecology, 99(6), 1498–1500. https://doi.org/10.1002/ecy.2170

Suetsugu, K. (2019). Gastrodia amamiana (Orchidaceae; Epidendroideae; Gastrodieae), a new completely cleistogamous species from Japan. Phytotaxa, 413(3), 225–230. https://doi.org/10.11646/phytotaxa. 413.3.3

Suetsugu, K. (2021). Gastrodia longiflora (Orchidaceae: Epidendroideae: Gastrodieae), a new mycoheterotrophic species from Ishigaki Island, Ryukyu Islands, Japan. Phytotaxa, 502(1), 107–110. https://doi.org/ 10.11646/phytotaxa.502.1.9

Suetsugu, K., Matsubayashi, J., & Tayasu, I. (2020). Some mycoheterotrophic orchids depend on carbon from dead wood: Novel evidence from a radiocarbon approach. New Phytologist, 227(5), 1519–1529. https://doi.org/10.1111/nph.16409

Suetsugu, K., Nakama, M., Watanabe, T., Watanabe, H., Yamamoto, T., & Yokota, M. (2013). First record of the mycoheterotrophic plant Gastrodia clausa (Orchidaceae) from Okinawa Island, Ryukyu Islands, Japan. Journal of Japanese Botany, 64(1), 123–126.

Taylor, D. L., Bruns, T. D., & Hodges, S. A. (2003). Evidence for mycorrhizal races in a cheating orchid. Proceedings of the Royal Society of London, 271(1534), 35–43. https://doi.org/10.1098/rspb.2003.2557

Thoen, E., Harder, C. B., Kauserud, H., Botnen, S. S., Vik, U., Taylor, A. F., Menkis, A., & Skrede, I. (2020). In vitro evidence of root colonization suggests ecological versatility in the genus Mycena. New Phytologist, 227, 601–612. https://doi.org/10.1111/nph.16545

Thorogood, C. J. (2019). Oxygyne: An extraordinarily elusive flower. Plants, People, Planet, 1(2), 67–70. https://doi.org/10.1002/ppp3.26

Thorogood, C. J., & Mat Yunoh, S.-M. (2021). Fairy lanterns in focus. Plants, People, Planet, 3(6), 680–684. https://doi.org/10.1002/ppp3.10217

Wang, X.-J., Barrett, S. C. H., Zhong, L., Wu, Z.-K., Li, D.-Z., Wang, H., & Zhou, W. (2021). The genomic selfing syndrome accompanies the evo- lutionary breakdown of heterostyly. Molecular Biology and Evolution, 38(1), 168–180. https://doi.org/10.1093/molbev/msaa199

Wright, S. I., Kalisz, S., & Slotte, T. (2013). Evolutionary consequences of self-fertilization in plants. Proceedings of the Royal Society B: Biological Sciences, 280(1760). https://doi.org/10.1098/rspb.2013.0133

Wright, S. I., Ness, R. W., Foxe, J. P., & Barrett, S. C. H. (2008). Genomic consequences of outcrossing and selfing in plants. Interna- tional Journal of Plant Sciences, 169(1), 105–118. https://doi.org/10. 1086/523366

Zhou, X., Lin, H., Fan, X.-L., & Gao, J.-Y. (2012). Autonomous self- pollination and insect visitation in a saprophytic orchid, Epipogium roseum (D.Don) Lindl. Australian Journal of Botany, 60(2), 154–159. https://doi.org/10.1071/BT11265

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る