リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Denoising approach with deep learning-based reconstruction for neuromelanin-sensitive MRI: image quality and diagnostic performance」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Denoising approach with deep learning-based reconstruction for neuromelanin-sensitive MRI: image quality and diagnostic performance

Oshima, Sonoko Fushimi, Yasutaka Miyake, Kanae Kawai Nakajima, Satoshi Sakata, Akihiko Okuchi, Sachi Hinoda, Takuya Otani, Sayo Numamoto, Hitomi Fujimoto, Koji Shima, Atsushi Nambu, Masahito Sawamoto, Nobukatsu Takahashi, Ryosuke Ueno, Kentaro Saga, Tsuneo Nakamoto, Yuji 京都大学 DOI:10.1007/s11604-023-01452-9

2023.11

概要

[Purpose]Neuromelanin-sensitive MRI (NM-MRI) has proven useful for diagnosing Parkinson’s disease (PD) by showing reduced signals in the substantia nigra (SN) and locus coeruleus (LC), but requires a long scan time. The aim of this study was to assess the image quality and diagnostic performance of NM-MRI with a shortened scan time using a denoising approach with deep learning-based reconstruction (dDLR).[Materials and methods]We enrolled 22 healthy volunteers, 22 non-PD patients and 22 patients with PD who underwentNM-MRI, and performed manual ROI-based analysis. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) in ten healthy volunteers were compared among images with a number of excitations (NEX) of 1 (NEX1), NEX1 images with dDLR (NEX1+dDLR) and 5-NEX images (NEX5). Acquisition times for NEX1 and NEX5 were 3 min 12 s and 15 min 58 s, respectively. Diagnostic performances using the contrast ratio (CR) of the SN (CR_SN) and LC (CR_LC) and those by visual assessment for diferentiating PD from non-PD were also compared between NEX1 and NEX1+dDLR.[Results]Image quality analyses revealed that SNRs and CNRs of the SN and LC in NEX1+dDLR were signifcantly higherthan in NEX1, and comparable to those in NEX5. In diagnostic performance analysis, areas under the receiver operating characteristic curve (AUC) using CR_SN and CR_LC of NEX1+dDLR were 0.87 and 0.75, respectively, which had no signifcant diference with those of NEX1. Visual assessment showed improvement of diagnostic performance by applying dDLR.[Conclusion]Image quality for NEX1+dDLR was comparable to that of NEX5. dDLR has the potential to reduce scan time of NM-MRI without degrading image quality. Both 1-NEX NM-MRI with and without dDLR showed high AUCs for diagnosing PD by CR. The results of visual assessment suggest advantages of dDLR. Further tuning of dDLR would be expected to provide clinical merits in diagnosing PD.

この論文で使われている画像

参考文献

1. Ma SY, Röyttä M, Rinne JO, Collan Y, Rinne UK. Correlation

between neuromorphometry in the substantia nigra and clinical

features in Parkinson’s disease using disector counts. J Neurol Sci.

1997;151:83–7.

2. Kordower JH, Olanow CW, Dodiya HB, Chu Y, Beach TG, Adler

CH, et al. Disease duration and the integrity of the nigrostriatal

system in Parkinson’s disease. Brain. 2013;136:2419–31.

3. Zucca FA, Bellei C, Giannelli S, Terreni MR, Gallorini M, Rizzio

E, et al. Neuromelanin and iron in human locus coeruleus and

substantia nigra during aging: consequences for neuronal vulnerability. J Neural Transm (Vienna). 2006;113:757–67.

4. Sulzer D, Cassidy C, Horga G, Kang UJ, Fahn S, Casella L, et al.

Neuromelanin detection by magnetic resonance imaging (MRI)

and its promise as a biomarker for Parkinson’s disease. NPJ Parkinsons Dis. 2018;4:11.

5. de la Fuente-Fernández R, Schulzer M, Kuramoto L, Cragg J,

Ramachandiran N, Au WL, et al. Age-specific progression of

nigrostriatal dysfunction in Parkinson’s disease. Ann Neurol.

2011;69:803–10.

6. Fearnley JM, Lees AJ. Ageing and Parkinson’s disease: substantia

nigra regional selectivity. Brain. 1991;114(Pt 5):2283–301.

7. Matsuura K, Maeda M, Tabei KI, Umino M, Kajikawa H, Satoh

M, et al. A longitudinal study of neuromelanin-sensitive magnetic resonance imaging in Parkinson’s disease. Neurosci Lett.

2016;633:112–7.

8. Reimão S, Pita Lobo P, Neutel D, Correia Guedes L, Coelho M,

Rosa MM, et al. Substantia nigra neuromelanin magnetic resonance imaging in de novo Parkinson’s disease patients. Eur J Neurol. 2015;22:540–6.

9. Schwarz ST, Xing Y, Tomar P, Bajaj N, Auer DP. In vivo assessment of brainstem depigmentation in Parkinson disease: potential as a severity marker for multicenter studies. Radiology.

2017;283:789–98.

10. Sasaki M, Shibata E, Tohyama K, Takahashi J, Otsuka K,

Tsuchiya K, et al. Neuromelanin magnetic resonance imaging of

locus ceruleus and substantia nigra in Parkinson’s disease. NeuroReport. 2006;17:1215–8.

11. Trujillo P, Summers PE, Ferrari E, Zucca FA, Sturini M, Mainardi

LT, et al. Contrast mechanisms associated with neuromelaninMRI. Magn Reson Med. 2017;78:1790–800.

Japanese Journal of Radiology (2023) 41:1216–1225 12. Nakane T, Nihashi T, Kawai H, Naganawa S. Visualization of

neuromelanin in the Substantia nigra and locus ceruleus at 1.5T

using a 3D-gradient echo sequence with magnetization transfer

contrast. Magn Reson Med Sci. 2008;7:205–10.

13. Cassidy CM, Zucca FA, Girgis RR, Baker SC, Weinstein JJ, Sharp

ME, et al. Neuromelanin-sensitive MRI as a noninvasive proxy

measure of dopamine function in the human brain. Proc Natl Acad

Sci U S A. 2019;116:5108–17.

14. Betts MJ, Kirilina E, Otaduy MCG, Ivanov D, Acosta-Cabronero

J, Callaghan MF, et al. Locus coeruleus imaging as a biomarker

for noradrenergic dysfunction in neurodegenerative diseases.

Brain. 2019;142:2558–71.

15. Chen X, Huddleston DE, Langley J, Ahn S, Barnum CJ, Factor

SA, et al. Simultaneous imaging of locus coeruleus and substantia nigra with a quantitative neuromelanin MRI approach. Magn

Reson Imaging. 2014;32:1301–6.

16. Martín-Bastida A, Lao-Kaim NP, Roussakis AA, Searle GE, Xing

Y, Gunn RN, et al. Relationship between neuromelanin and dopamine terminals within the Parkinson’s nigrostriatal system. Brain.

2019;142:2023–36.

17. Langley J, Huddleston DE, Chen X, Sedlacik J, Zachariah N, Hu

X. A multicontrast approach for comprehensive imaging of substantia nigra. Neuroimage. 2015;112:7–13.

18. Isaias IU, Trujillo P, Summers P, Marotta G, Mainardi L, Pezzoli G, et al. Neuromelanin Imaging and Dopaminergic Loss in

Parkinson’s Disease. Front Aging Neurosci. 2016;8:196.

19. Ogisu K, Kudo K, Sasaki M, Sakushima K, Yabe I, Sasaki H,

et al. 3D neuromelanin-sensitive magnetic resonance imaging

with semi-automated volume measurement of the substantia nigra

pars compacta for diagnosis of Parkinson’s disease. Neuroradiology. 2013;55:719–24.

20. Wolff SD, Balaban RS. Magnetization transfer contrast (MTC)

and tissue water proton relaxation in vivo. Magn Reson Med.

1989;10:135–44.

21. Kusama M, Sato N, Kimura Y, Miyagi K. Quick MR neuromelanin imaging using a chemical shift selective pulse. Magn Reson

Med Sci. 2021;20:106–11.

22. Oshima S, Fushimi Y, Okada T, Nakajima S, Yokota Y, Shima A,

et al. Neuromelanin-sensitive magnetic resonance imaging using

DANTE pulse. Mov Disord. 2021;36:874–82.

23. Wengler K, He X, Abi-Dargham A, Horga G. Reproducibility

assessment of neuromelanin-sensitive magnetic resonance imaging protocols for region-of-interest and voxelwise analyses. Neuroimage. 2020;208: 116457.

24. Kidoh M, Shinoda K, Kitajima M, Isogawa K, Nambu M, Uetani

H, et al. Deep learning based noise reduction for brain MR imaging: tests on phantoms and healthy volunteers. Magn Reson Med

Sci. 2020;19:195–206.

25. Ueda T, Ohno Y, Yamamoto K, Iwase A, Fukuba T, Hanamatsu

S, et al. Compressed sensing and deep learning reconstruction

for women’s pelvic MRI denoising: Utility for improving image

quality and examination time in routine clinical practice. Eur J

Radiol. 2021;134: 109430.

26. Kim M, Kim HS, Kim HJ, Park JE, Park SY, Kim YH, et al.

Thin-slice pituitary MRI with deep learning-based reconstruction: diagnostic performance in a postoperative setting. Radiology.

2021;298:114–22.

1225

27. Wataya T, Nakanishi K, Suzuki Y, Kido S, Tomiyama N. Introduction to deep learning: minimum essence required to launch a

research. Jpn J Radiol. 2020;38:907–21.

28. Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel

W, et al. MDS clinical diagnostic criteria for Parkinson’s disease.

Mov Disord. 2015;30:1591–601.

29. Matsuura K, Maeda M, Yata K, Ichiba Y, Yamaguchi T, Kanamaru

K, et al. Neuromelanin magnetic resonance imaging in Parkinson’s

disease and multiple system atrophy. Eur Neurol. 2013;70:70–7.

30. Uetani H, Nakaura T, Kitajima M, Yamashita Y, Hamasaki T,

Tateishi M, et al. A preliminary study of deep learning-based

reconstruction specialized for denoising in high-frequency

domain: usefulness in high-resolution three-dimensional magnetic

resonance cisternography of the cerebellopontine angle. Neuroradiology. 2021;63:63–71.

31. Castellanos G, Fernandez-Seara MA, Lorenzo-Betancor O,

Ortega-Cubero S, Puigvert M, Uranga J, et al. Automated neuromelanin imaging as a diagnostic biomarker for Parkinson’s disease. Mov Disord. 2015;30:945–52.

32. Wang S, Wu T, Cai Y, Yu Y, Chen X, Wang L. Neuromelanin

magnetic resonance imaging of substantia nigra and locus coeruleus in Parkinson’s disease with freezing of gait. Front Aging

Neurosci. 2023;15:1060935.

33. Liu Y, Li J, He N, Chen Y, Jin Z, Yan F, et al. Optimizing neuromelanin contrast in the substantia nigra and locus coeruleus

using a magnetization transfer contrast prepared 3D gradient

recalled echo sequence. Neuroimage. 2020;218: 116935.

34. Shinde S, Prasad S, Saboo Y, Kaushick R, Saini J, Pal PK, et al.

Predictive markers for Parkinson’s disease using deep neural

nets on neuromelanin sensitive MRI. Neuroimage Clin. 2019;22:

101748.

35. Le Berre A, Kamagata K, Otsuka Y, Andica C, Hatano T, Saccenti L, et al. Convolutional neural network-based segmentation

can help in assessing the substantia nigra in neuromelanin MRI.

Neuroradiology. 2019;61:1387–95.

36. Krupicka R, Marecek S, Mala C, Lang M, Klempir O, Duspivova

T, et al. Automatic substantia nigra segmentation in neuromelanin-sensitive MRI by deep neural network in patients with prodromal and manifest synucleinopathy. Physiol Res. 2019;68:S453–8.

37. Gaurav R, Pyatigorskaya N, Biondetti E, Valabregue R, YahiaCherif L, Mangone G, et al. Deep learning-based neuromelanin

MRI changes of isolated REM sleep behavior disorder. Mov Disord. 2022;37:1064–9.

38. Shin DH, Heo H, Song S, Shin NY, Nam Y, Yoo SW, et al. Automated assessment of the substantia nigra on susceptibility mapweighted imaging using deep convolutional neural networks for

diagnosis of Idiopathic Parkinson’s disease. Parkinsonism Relat

Disord. 2021;85:84–90.

Publisher's Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

13

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る