リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「ON MOD 2 ARITHMETIC DIJKGRAAF–WITTEN INVARIANTS FOR CERTAIN REAL QUADRATIC NUMBER FIELDS」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

ON MOD 2 ARITHMETIC DIJKGRAAF–WITTEN INVARIANTS FOR CERTAIN REAL QUADRATIC NUMBER FIELDS

Hirano, Hikaru 大阪大学 DOI:10.18910/93066

2023.10

概要

theory for number fields as an arithmetic analogue of the Dijkgraaf–Witten theory for 3manifolds [7], based on the analogies between number rings and 3-manifolds, and primes
and knots in arithmetic topology [13]. We note that Dijkgraaf–Witten theory may be regarded as a 3-dimensional Chern–Simons gauge theory with finite gauge groups. Kim’s
theory is concerned with totally imaginary number fields, since it employs some results on
e´ tale cohomology groups of the ring of integers of totally imaginary number fields, which
no longer hold for number fields with real primes. Therefore, it is desirable to extend Kim’s
theory for number fields with real primes.
In this paper, we extend Kim’s theory for number fields with real primes, by using the
modified e´ tale cohomology groups and the modified e´ tale fundamental groups which take
real primes into account. We then explicitly calculate the mod 2 arithmetic Dijkgraaf–Witten

invariants for real quadratic fields Q( p1 p2 · · · pr ), where pi ’s are distinct prime numbers
congruent to 1 mod 4, in terms of the Legendre symbols of pi ’s.
Let us outline the construction of arithmetic Chern–Simons invariants and arithmetic
Dijkgraaf–Witten invariants in the following. Let n be a positive integer and let K be a finite
algebraic number field containing n-th roots of unity. Note that if K has a real prime, then n
must be 2. We choose a primitive n-th root of unity ζn in K, which induces an isomorphism
Z/nZ  μn . Let K denote the ring of integers of K and let X = Spec K denote the prime
spectrum of K . Let X∞ denote the set of infinite primes of K and set X = X  X∞ . Following [3] and [1], we may introduce a Grothendieck topology (site) X e´ t called the Artin–Verdier
site, the topos Sh(X e´ t ) of abelian sheaves on X e´ t , and the modified e´ tale cohomology groups
Hi (X, F) for F ∈ Sh(X e´ t ) and i ≥ 0. These cohomology groups admit the 3-dimensional
2020 Mathematics Subject Classification. Primary 11R37, 81T45; Secondary 11R80, 14F20, 57K31. ...

この論文で使われている画像

参考文献

[1] E. Ahlqvist and M. Carlson: The e´ tale cohomology ring of the ring of integers of a number field,

arXiv:1803.08437.

954

H. Hirano

[2] M. Artin: Grothendieck topologies, Harvard University, Cambridge, Mass, 1962.

[3] M. Bienenfeld: An e´ tale cohomology duality theorem for number fields with a real embedding, Trans.

Amer. Math. Soc. 303 (1987), 71–96.

[4] F.M. Bleher, T. Chinburg, R. Greenberg, M. Kakde, G. Pappas and M.J. Taylor: Cup products in the e´ tale

cohomology of number fields, New York J. Math. 24 (2018), 514–542.

[5] H.-J. Chung, D. Kim, M. Kim, G. Pappas, J. Park and H. Yoo: Abelian arithmetic Chern-Simons theory

and arithmetic linking numbers, Int. Math. Res. Not. IMRN (2019), 5674–5702.

[6] H.-J. Chung, D. Kim, M. Kim, J. Park and H. Yoo: Arithmetic Chern-Simons theory II; in p-adic Hodge

theory, Simons Symp., Springer International Publishing, Cham, 2020, 81–128.

[7] R. Dijkgraaf and E. Witten: Topological gauge theories and group cohomology, Comm. Math. Phys. 129

(1990), 393–429.

[8] R.H. Fox: Covering spaces with singularities; in A symposium in honor of S. Lefschetz, Princeton University Press, Princeton, 1957, 243–257.

[9] M. Kim: Arithmetic Chern-Simons theory I; in Galois covers, Grothendieck-Teichm¨uller Theory and

Dessins d’Enfants-Interactions between Geometry, Topology, Number Theory and Algebra, Springer Proc.

Math. Stat. 330, Springer, Cham, 2020, 155–180.

[10] T. Kohno: Conformal field theory and topology, Translations of Mathematical Monographs 210, Iwanami

Series in Modern Mathematics, Amer. Math. Soc. Providence, RI, 2002.

[11] J. Lee and J. Park: Arithmetic Chern-Simons theory with real places, arXiv:1905.13610.

[12] J.S. Milne: Etale

cohomology, Princeton Mathematical Series 33, Princeton University Press, Princeton,

1980.

[13] M. Morishita: Knots and primes, an introduction to arithmetic topology, Universitext, Springer, London,

2012.

[14] M. Morishita: A theory of genera for cyclic coverings of links, Proc. Japan Acad. Ser. A Math. Sci. 77

(2001), 115–118.

[15] H. Murakami, T. Ohtsuki and M. Okada: Invariants of three-manifolds derived from linking matrices of

framed links, Osaka J. Math. 29 (1992), 545–572.

[16] T. Ono: An introduction to algebraic number theory, The University Series in Mathematics, Plenum Press,

New York, 1990.

[17] A. Grothendieck: Revˆetements e´ tales et groupe fondamental, S´eminaire de g´eom´etrie alg´ebrique du Bois

Marie 1960–61, Documents Math´ematiques (Paris) 3, Soci´et´e Math´ematique de France, Paris, 2003.

[18] R.G. Swan: Cup products in sheaf cohomology, pure injectives, and a substitute for projective resolutions,

J. Pure Appl. Algebra. 144 (1999), 169–211.

[19] G. Tamme: Introduction to e´ tale cohomology, Translated from the German by Manfred Kolster, Universitext. Springer-Verlag, Berlin, 1994.

[20] R. Tuler: On the linking number of a 2-bridge link, Bull. London Math. Soc. 13 (1981), 540–544.

[21] T. Zink: Etale cohomology and duality in number fields; in Galois Cohomology of Albebraic Number

Filelds, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978.

Faculty of Mathematics, Kyushu University

744, Motooka, Nishi-ku

Fukuoka, 819–0395

Japan

e-mail: simentos1026@gmail.com

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る