リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Simulating Vibronic Spectra without Born–Oppenheimer Surfaces」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Simulating Vibronic Spectra without Born–Oppenheimer Surfaces

Lively, Kevin Albareda, Guillermo 佐藤, 駿丞 Kelly, Aaron Rubio, Angel 筑波大学 DOI:33750137

2022.06.13

概要

We show how linear vibronic spectra in molecular systems can be simulated efficiently using first-principles approaches without relying on the explicit use of multiple Born−Oppenheimer potential energy surfaces. We demonstrate and analyze the performance of mean-field and beyond-mean-field dynamics techniques for the H2 molecule in one dimension, in the later case capturing the vibronic structure quite accurately, including quantum Franck− Condon effects. In a practical application of this methodology we simulate the absorption spectrum of benzene in full dimensionality using time-dependent density functional theory at the multitrajectory Ehrenfest level, finding good qualitative agreement with experiment and significant spectral reweighting compared to commonly used single-trajectory Ehrenfest dynamics. These results form the foundation for nonlinear spectral calculations and show promise for future application in capturing phenomena associated with vibronic coupling in more complex molecular and potentially condensed phase systems.

この論文で使われている画像

参考文献

(1) May, V.; Kühn, O. Charge and Energy Transfer Dynamics in Molecular Systems, 3rd ed.; 2011.

(2) Ullrich, C. A. Time-Dependent Density-Functional Theory: Concepts and Applications; Oxford Graduate Texts; 2011.

(3) Wigner, E. On the quantum correction for thermodynamic equilibrium. Phys. Rev. 1932, 40, 749−759.

(4) Case, W. B. Wigner functions and Weyl transforms for pedestrians. Am. J. Phys. 2008, 76, 937−946.

(5) Grunwald, R.; Kelly, A.; Kapral, R. Quantum Dynamics in Almost Classical Environments. In Energy Transfer Dynamics in Biomaterial Systems, 2009.

(6) Jasper, A. W.; Zhu, C.; Nangia, S.; Truhlar, D. G. Introductory lecture: Nonadiabatic effects in chemical dynamics. Faraday Discuss. 2004, 127, 1−22.

(7) Karsten, S.; Ivanov, S. D.; Bokarev, S. I.; Kühn, O. Quasi-classical approaches to vibronic spectra revisited. J. Chem. Phys. 2018, 102337.

(8) Tully, J. C. Mixed quantum-classical dynamics. Faraday Discussions 1998, 110, 407.

(9) Kapral, R. Progress in the theory of mixed quantum-classical dynamics. Annu. Rev. Phys. Chem. 2006, 57, 129−157.

(10) Lee, M. K.; Huo, P.; Coker, D. F. Semiclassical Path Integral Dynamics: Photosynthetic Energy Transfer With Realistic Environ- ment Interactions. Annu. Rev. Phys. Chem. 2016, 67, 639−668.

(11) Agostini, F.; Min, S. K.; Abedi, A.; Gross, E. K. U. Quantum- classical nonadiabatic dynamics: coupled- vs independent-trajectory methods. J. Chem. Theory Comput. 2016, 12, 2127−2143.

(12) Talotta, F.; Agostini, F.; Ciccotti, G. Quantum trajectories for the dynamics in the exact factorization framework: A proof-of- principle test. J. Phys. Chem. A 2020, 124, 6764−6777.

(13) Tully, J. C. Molecular dynamics with electronic transitions. J. Chem. Phys. 1990, 93, 1061−1071.

(14) Donoso, A.; Martens, C. C. Simulation of coherent non- adiabatic dynamics using classical trajectories. J. Phys. Chem. A 1998, 102, 4291−4300.

(15) Shalashilin, D. V. Multiconfigurational Ehrenfest approach to quantum coherent dynamics in large molecular systems. Faraday Discuss. 2011, 153, 105−116.

(16) Mignolet, B.; Curchod, B. F. A walk through the approximations of ab initio multiple spawning. J. Chem. Phys. 2018, 148, 134110.

(17) Nijjar, P.; Jankowska, J.; Prezhdo, O. V. Ehrenfest and classical path dynamics with decoherence and detailed balance. J. Chem. Phys. 2019, 150, 204124.

(18) Albareda, G.; Appel, H.; Franco, I.; Abedi, A.; Rubio, A. Correlated electron-nuclear dynamics with conditional wave func- tions. Phys. Rev. Lett. 2014, 113, 083003.

(19) Albareda, G.; Bofill, J. M.; Tavernelli, I.; Huarte-Larranaga, F.; Illas, F.; Rubio, A. Conditional Born-Oppenheimer dynamics: Quantum dynamics simulations for the model porphine. J. Phys. Chem. Lett. 2015, 6, 1529.

(20) Albareda, G.; Abedi, A.; Tavernelli, I.; Rubio, A. Universal steps in quantum dynamics with time-dependent potential-energy surfaces: Beyond the Born-Oppenheimer picture. Phys. Rev. A: At., Mol., Opt. Phys. 2016, 94, 062511.

(21) Albareda, G.; Kelly, A.; Rubio, A. Nonadiabatic quantum dynamics without potential energy surfaces. Physical Review Materials 2019, 3, 023803.

(22) Tokmakoff, A. Time-dependent quantum mechanics and spectroscopy. Lecture, 2014.

(23) Raab, A.; Worth, G. A.; Meyer, H.-D.; Cederbaum, L. S. Molecular dynamics of pyrazine after excitation to the S2 electronic state using a realistic 24-mode model Hamiltonian. J. Chem. Phys. 1999, 110, 936−946.

(24) Vendrell, O.; Meyer, H. D. Multilayer multiconfiguration time- dependent Hartree method: Implementation and applications to a Henon-Heiles Hamiltonian and to pyrazine. J. Chem. Phys. 2011, 134, 044135.

(25) Yabana, K.; Bertsch, G. Time-dependent local-density approximation in real time. Phys. Rev. B: Condens. Matter Mater. Phys. 1996, 54, 4484−4487.

(26) De Giovannini, U.; Brunetto, G.; Castro, A.; Walkenhorst, J.; Rubio, A. Simulating pump-probe photoelectron and absorption spectroscopy on the attosecond timescale with time-dependent density functional theory. ChemPhysChem 2013, 14, 1363−1376.

(27) McLachlan, A. D. A variational solution of the time-dependent Schrodinger equation. Mol. Phys. 1964, 8, 39−44.

(28) Vacher, M.; Bearpark, M. J.; Robb, M. A. Direct methods for non-adiabatic dynamics: connecting the single-set variational multi- configuration Gaussian (vMCG) and Ehrenfest perspectives. Theor. Chem. Acc. 2016, 135, 187.

(29) Li, X.; Tully, J. C.; Schlegel, H. B.; Frisch, M. J. Ab initio Ehrenfest dynamics. J. Chem. Phys. 2005, 123, 084106.

(30) Andrea Rozzi, C.; Maria Falke, S.; Spallanzani, N.; Rubio, A.; Molinari, E.; Brida, D.; Maiuri, M.; Cerullo, G.; Schramm, H.; Christoffers, J. Quantum coherence controls the charge separation in a prototypical artificial light-harvesting system. Nat. Commun. 2013, 4, 1602.

(31) Krumland, J.; Valencia, A. M.; Pittalis, S.; Rozzi, C. A.; Cocchi, C. Understanding real-time time-dependent density-functional theory simulations of ultrafast laser-induced dynamics in organic molecules. J. Chem. Phys. 2020, 153, 054106.

(32) Goings, J. J.; Lingerfelt, D. B.; Li, X. Can quantized vibrational effects be obtained from ehrenfest mixed quantum-classical dynamics? J. Phys. Chem. Lett. 2016, 7, 5193−5197.

(33) Kapral, R.; Ciccotti, G. Mixed quantum-classical dynamics. J. Chem. Phys. 1999, 110, 8919−8929.

(34) Broeckhove, J.; Lathouwers, L.; Kesteloot, E.; Van Leuven, P. On the equivalence of time-dependent variational principles. Chem. Phys. Lett. 1988, 149, 547−550.

(35) Lubich, C. On variational approximations in quantum molecular dynamics. Mathematics of Computation 2005, 74, 765−780.

(36) Ohta, K. Time-dependent variational principle with constraints for parametrized wave functions. Phys. Rev. A: At., Mol., Opt. Phys. 2004, 70, 022503.

(37) Kosloff, R.; Tal-Ezer, H. A direct relaxation method for calculating eigenfunctions and eigenvalues of the schrödinger equation on a grid. Chem. Phys. Lett. 1986, 127, 223.

(38) Shi, T.; Demler, E.; Ignacio Cirac, J. Variational study of fermionic and bosonic systems with non-Gaussian states: Theory and applications. Ann. Phys. 2018, 390, 245−302.

(39) Generalized Inverses; Springer: New York, NY, 2006.

(40) Kreibich, T.; Lein, M.; Engel, V.; Gross, E. K. Even-harmonic generation due to beyond-born-oppenheimer dynamics. Phys. Rev. Lett. 2001, 87, 103901.

(41) Lein, M.; Kreibich, T.; Gross, E. K.; Engel, V. Strong-field ionization dynamics of a model [Formula Presented] molecule. Phys. Rev. A: At., Mol., Opt. Phys. 2002, 65, 033403.

(42) Bandrauk, A. D.; Shon, N. H. Attosecond control of ionization and high-order harmonic generation in molecules. Phys. Rev. A: At., Mol., Opt. Phys. 2002, 66, 031401.

(43) Crespo-Otero, R.; Barbatti, M. Spectrum simulation and decomposition with nuclear ensemble: Formal derivation and application to benzene, furan and 2-phenylfuran. Theor. Chem. Acc. 2012, 131, 1237.

(44) Tancogne-Dejean, N.; Oliveira, M. J.; Andrade, X.; Appel, H.; Borca, C. H.; le Breton, G.; Buchholz, F.; Castro, A.; Corni, S.; Correa, A. A.; et al. Octopus, a computational framework for exploring light-driven phenomena and quantum dynamics in extended and finite systems. J. Chem. Phys. 2020, 152, 124119.

(45) Gross, E. K. U.; Maitra, N. T. Introduction to TDDFT. Fundamentals of Time-Dependent Density Functional Theory 2012, 837, 53−99.

(46) Pantos, E.; Philis, J.; Bolovinos, A. The extinction coefficient of benzene vapor in the region 4.6 to 36 eV. J. Mol. Spectrosc. 1978, 72, 36−43.

(47) Koch, E. E.; Otto, A. Optical absorption of benzene vapour for photon energies from 6 to 35 eV. Chem. Phys. Lett. 1972, 12, 476−480.

(48) Gingell, J. M.; Marston, G.; Mason, N. J.; Zhao, H.; Siggel, M. R. On the electronic spectroscopy of benzyl alcohol. Chem. Phys. 1998, 237, 443−449.

(49) Ridolfi, E.; Trevisanutto, P. E.; Pereira, V. M. Expeditious computation of nonlinear optical properties of arbitrary order with native electronic interactions in the time domain. Phys. Rev. B: Condens. Matter Mater. Phys. 2020, 102, 245110.

(50) Verlet, L. Computer ”experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev. 1967, 159, 98.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る