リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Laboratory Flushing Tests of Dissolved Contaminants in Heterogeneous Porous Media with Low-Conductivity Zones」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Laboratory Flushing Tests of Dissolved Contaminants in Heterogeneous Porous Media with Low-Conductivity Zones

Kurasawa, Tomoki Takahashi, Yoshitaro Suzuki, Mariko Inoue, Kazuya 神戸大学

2023.04

概要

The retention of contaminants within low-conductivity regions such as clay lenses and aquitards can greatly affect groundwater remediation processes. The aim of this study was to experimentally investigate the effects of the geometry of low-conductivity zones, conductivity contrast, and flow regime on solute flushing. We conducted a series of flushing tests in cylindrical models containing a cylindrical low-conductivity zone (i.e., low-K zone) embedded in a highly conductive medium (i.e., high-K zone). Seven models comprising four high-conductivity-contrast (SL, SS, LL, and LS), one medium-contrast (LLM), one low-contrast (LLL), and one homogeneous (H) models were considered. Experiments were conducted at two flow rates (Q = 0.6 and 26 cm³/min) for each heterogeneous model (SL, SS, LL, LS, LLM, and LLL) to compare the flushing processes in different flow regimes. First, we verified the validity of our experiments by comparing the results of the H model from an analytical solution with our experiment. The results of the high-contrast models showed that for a diffusion-dominated regime (Q = 0.6 cm³/min), the pore volume injected (PVI) required to flush out solute mass was much smaller than that in an advection-dominated regime (Q = 26 cm³/min). To evaluate the pore volumes required to flush out solutes for the four high-contrast models, we introduced a parameter P₀.₀₁, which is defined as the PVI needed for the relative concentration to become 0.01 at the middle of the low-K zone. P₀.₀₁ decreases with increasing the specific surface area of the low-K zone for diffusion-dominated regimes, while it increases with increasing the length of the low-K zone for advection-dominated regimes. We also determined the importance of the effect of K contrast on solute retention by comparing the results of three different models of K contrast (LL, LLM, and LLL).

この論文で使われている画像

参考文献

Abdoulhalik, A., & Ahmed, A. A. (2017). How does layered

heterogeneity affect the ability of subsurface dams to

clean up coastal aquifers contaminated with seawater

intrusion? Journal of Hydrology, 553, 708–721. https://​

doi.​org/​10.​1016/j.​jhydr​ol.​2017.​08.​044

Appelo, C. A. J., & Postma, D. (2010). Geochemistry, Groundwater and Pollution (2nd ed.). CRC Press.

Barth, G. R. M., Hill, M. C., Illangasekare, T. H., & Rajaram,

H. (2001). Predictive modeling of flow and transport

in a two-dimensional intermediate-scale, heterogeneous porous medium. Water Resources Research, 37(10),

2503–2512. https://​doi.​org/​10.​1029/​2001W​R0002​42

Bear, J. (1972). Dynamics of fluids in porous media. Elsevier.

Blue, J., Boving, T., Tuccillo, M. E., Koplos, J., Rose, J.,

Brooks, M., & Burden, D. (2023). Contaminant back diffusion from low-conductivity matrices: Case studies of

remedial strategies. Water, 15(3), 570. https://​doi.​org/​10.​

3390/​w1503​0570

Brooks, M. C., Yarney, E., & Huang, J. (2020). Strategies for

managing risk due to back diffusion. Groundwater Monitoring and Remediation, 41(1), 76–98. https://​doi.​org/​10.​

1111/​gwmr.​12423

Brusseau, M. L., & Guo, Z. (2014). Assessing contaminantremoval conditions and plume persistence through analysis of data from long-term pump-and-treat operations.

Journal of Contaminant Hydrology, 164, 16–24. https://​

doi.​org/​10.​1016/j.​jconh​yd.​2014.​05.​004

Castro-Alcalá, E., Fernàndez-Garcia, D., Carrera, J., & Bolster,

D. (2012). Visualization of mixing processes in a heterogeneous sand box aquifer. Environmental Science and

Technology, 46(6), 3228–3235. https://​doi.​org/​10.​1021/​

es201​779p

Chapman, S. W., & Parker, B. L. (2005). Plume persistence due

to aquitard back diffusion following dense nonaqueous

phase liquid source removal or isolation. Water Resources

Research, 41(12), W12411. https://​doi.​org/​10.​1029/​

2005W​R0042​24

Chapman, S. W., Parker, B. L., Sale, T. C., & Doner, L. A. (2012).

Testing high resolution numerical models for analysis of contaminant storage and release from low permeability zones.

Journal of Contaminant Hydrology, 136–137, 106–116.

https://​doi.​org/​10.​1016/j.​jconh​yd.​2012.​04.​006

Citarella, D., Cupola, F., Tanda, M. G., & Zanini, A. (2015). Evaluation of dispersivity coefficients by means of a laboratory

image analysis. Journal of Contaminant Hydrology, 172,

10–23. https://​doi.​org/​10.​1016/j.​jconh​yd.​2014.​11.​001

Di Palma, P. R., Parmigiani, A., Huber, C., Guyennon, N., &

Viotti, P. (2017). Pore-scale simulations of concentration

tails in heterogeneous porous media. Journal of Contaminant Hydrology, 205, 47–56. https://​doi.​org/​10.​1016/j.​

jconh​yd.​2017.​08.​003

Page 11 of 12 240

Guswa, A. J., & Freyberg, D. L. (2000). Slow advection and

diffusion through low permeability inclusions. Journal of

Contaminant Hydrology, 46(3–4), 205–232. https://​doi.​

org/​10.​1016/​S0169-​7722(00)​00136-4

Heidari, P., & Li, L. (2014). Solute transport in low-heterogeneity sandboxes: The role of correlation length and permeability variance. Water Resources Research, 50(310),

8240–8264. https://​doi.​org/​10.​1002/​2013W​R0146​54

Hoteit, H., Mose, R., Younes, A., Lehmann, F., & Ackerer, Ph.

(2002). Three-dimensional modeling of mass transfer in

porous media using the mixed hybrid finite elements and

the random-walk methods. Mathematical Geology, 34(4),

435–456. https://​doi.​org/​10.​1023/A:​10150​83111​971

Jaeger, S., Ehni, M., Eberhardt, C., Rolle, M., Grathwohl, P.,

& Gauglitz, G. (2009). CCD camera image analysis for

mapping solute concentrations in saturated porous media.

Analytical and Bioanalytical Chemistry, 395(6), 1867–

1876. https://​doi.​org/​10.​1007/​s00216-​009-​2978-3

Kurasawa, T., Suzuki, M., & Inoue, K. (2020). Experimental

assessment of solute dispersion in stratified porous media.

Hydrological Research Letters, 14(4), 123–129. https://​

doi.​org/​10.​3178/​hrl.​14.​123

Kurasawa, T., Takahashi, Y., Suzuki, M., & Inoue, K.

(2022). Truncation effect on estimation of transport

parameters for slug-injection tracer tests. Environmental Earth Sciences, 81(6), 185. https://​doi.​org/​10.​1007/​

s12665-​022-​10309-9

Li, L., Barry, D. A., Culligan-Hensley, P. J., & Bajracharya,

K. (1994). Mass transfer in soils with local stratification

of hydraulic conductivity. Water Resources Research,

30(11), 2891–2900. https://​doi.​org/​10.​1029/​94WR0​1218

McNeil, J. D., Oldenborger, G. A., & Schincariol, R. A. (2006).

Quantitative imaging of contaminant distributions in heterogeneous porous media laboratory experiments. Journal

of Contaminant Hydrology, 84(1–2), 36–54. https://​doi.​

org/​10.​1016/j.​jconh​yd.​2005.​12.​005

Parker, B. L., Cherry, J. A., & Chapman, S. W. (2004). Field

study of TCE diffusion profiles below DNAPL to assess

aquitard integrity. Journal of Contaminant Hydrology,

74(1–4), 197–230. https://​doi.​org/​10.​1016/j.​jconh​yd.​2004.​

02.​011

Parker, B. L., Chapman, S. W., & Guilbeault, M. A. (2008).

Plume persistence caused by back diffusion from thin

clay layers in a sand aquifer following TCE source-zone

hydraulic isolation. Journal of Contaminant Hydrology,

102(1–2), 86–104. https://​doi.​org/​10.​1016/j.​jconh​yd.​2008.​

07.​003

Silliman, S. E., & Zheng, L. (2001). Comparison of observations from a laboratory model with stochastic theory: Initial analysis of hydraulic and tracer experiments. Transport in Porous Media, 42(1/2), 85–107. https://​doi.​org/​10.​

1023/A:​10067​00111​701

Tatti, F., Papini, M. P., Raboni, M., & Viotti, P. (2016). Image

analysis procedure for studying Back-Diffusion phenomena from low-permeability layers in laboratory tests. Scientific Reports, 6, 30400. https://​doi.​org/​10.​1038/​srep3​

0400

Tatti, F., Papini, M. P., Sappa, G., Raboni, M., Arjmand, F., &

Viotti, P. (2018). Contaminant back-diffusion from lowpermeability layers as affected by groundwater velocity: A

laboratory investigation by box model and image analysis.

Vol.: (0123456789)

13

240 Page 12 of 12

Science of the Total Environment, 622–623, 164–171.

https://​doi.​org/​10.​1016/j.​scito​tenv.​2017.​11.​347

Tatti, F., Papini, M. P., Torretta, V., Mancini, G., Boni, M. R.,

& Viotti, P. (2019). Experimental and numerical evaluation of Groundwater Circulation Wells as a remediation

technology for persistent, low permeability contaminant

source zones. Journal of Contaminant Hydrology, 222,

89–100. https://​doi.​org/​10.​1016/j.​jconh​yd.​2019.​03.​001

United States Environmental Protection Agency (2020). Superfund remedy report. 16th edition. EPA.

Yang, M., Annable, M. D., & Jawitz, J. W. (2014). Light reflection visualization to determine solute diffusion into clays.

Journal of Contaminant Hydrology, 161, 1–9. https://​doi.​

org/​10.​1016/j.​jconh​yd.​2014.​02.​007

Yang, M., McCurley, K. L., Annable, M. D., & Jawitz, J. W.

(2019). Diffusion of solutes from depleting sources into

and out of finite low-permeability zones. Journal of Contaminant Hydrology, 221, 127–134. https://​doi.​org/​10.​

1016/j.​jconh​yd.​2019.​01.​005

Vol:. (1234567890)

13

Water Air Soil Pollut (2023) 234:240

You, X., Liu, S., Dai, C., Guo, Y., Zhong, G., & Duan, Y.

(2020). Contaminant occurrence and migration between

high- and low-permeability zones in groundwater systems:

A review. Science of the Total Environment, 743, 140703.

https://​doi.​org/​10.​1016/j.​scito​tenv.​2020.​140703

Zinn, B., Meigs, L. C., Harvey, C. F., Haggerty, R., Peplinski,

W. J., & Von Schwerin, C. F. (2004). Experimental visualization of solute transport and mass transfer processes

in two-dimensional conductivity fields with connected

regions of high conductivity. Environmental Science and

Technology, 38(14), 3916–3926. https://​doi.​org/​10.​1021/​

es034​958g

Publisher’s Note Springer Nature remains neutral with regard

to jurisdictional claims in published maps and institutional

affiliations.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る