リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Early Maternal and Social Deprivation Expands Neural Stem Cell Population Size and Reduces Hippocampus/Amygdala-Dependent Fear Memory.」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Early Maternal and Social Deprivation Expands Neural Stem Cell Population Size and Reduces Hippocampus/Amygdala-Dependent Fear Memory.

DAUN Kenny Anak FUCHIGAMI Takahiro KOYAMA Natsu 50135464 MARUTA Noriko IKENAKA Kazuhiro HITOSHI Seiji 70300895 0000-0002-6339-6802 滋賀医科大学

2020.01.29

概要

Early life stress can exert detrimental or beneficial effects on neural development and postnatal behavior depending on the timing, duration, strength, and ability to control the stressors. In this study, we utilized a maternal and social deprivation (MSD) model to investigate the effects of early life stress on neural stem cells (NSCs) and neurogenesis in the adult brain. We found that MSD during the stress-hyporesponsive period (SHRP) (early-MSD), when corticosterone secretion is suppressed, increased the size of the NSC population, whereas the same stress beyond the SHRP abrogated these effects. Early-MSD enhanced neurogenesis not only in the dentate gyrus of the hippocampus, one of the classic neurogenic regions, but also in the amygdala. In addition, mice exposed to early-MSD exhibited a reduction in amygdala/hippocampus-dependent fear memory. These results suggest that animals exposed to early life stress during the SHRP have reinforced stress resilience to cope with perceived stressors to maintain a normal homeostatic state.

参考文献

Bergado, J. A., Frey, S., López, J., Almaguer-Melian, W., and Frey, J. U. (2007). ).

Cholinergic afferents to the locus coeruleus and noradrenergic afferents to the

medial septum mediate LTP-reinforcement in the dentate gyrus by stimulation

of the amygdala. Neurobiol. Learn. Mem. 88, 331–341. doi: 10.1016/j.nlm.2007.

05.003

Bonaguidi, M. A., Wheeler, M. A., Shapiro, J. S., Stadel, R. P., Sun, G. J., Ming, G. L.,

et al. (2011). In vivo clonal analysis reveals self-renewing and multipotent adult

neural stem cell characteristics. Cell 145, 1142–1155. doi: 10.1016/j.cell.2011.05.

024

Caldji, C., Diorio, J., and Meaney, M. J. (2000). Variations in maternal care

in infancy regulate the development of stress reactivity. Biol. Psychiatry 48,

1164–1174. doi: 10.1016/s0006-3223(00)01084-2

Carney, R. S., Alfonso, T. B., Cohen, D., Dai, H., Nery, S., Stoica, B., et al.

(2006). Cell migration along the lateral cortical stream to the developing

basal telencephalic limbic system. J. Neurosci. 26, 11562–11574. doi: 10.1523/

jneurosci.3092-06.2006

Coggeshall, R. E., and Lekan, H. A. (1996). Methods for determining numbers

of cells and synapses: a case for more uniform standards of review. J. Comp.

Neurol. 364, 6–15. doi: 10.1002/(sici)1096-9861(19960101)364:1<6::aid-cne2>

3.0.co;2-9

This article is dedicated to Dr. Kazuhiro Ikenaka who passed away

during the preparation of this manuscript.

DATA AVAILABILITY STATEMENT

All datasets generated for this study are included in the

article/supplementary material.

ETHICS STATEMENT

The animal study was reviewed and approved by the Animal Care

and Use Committee of the Shiga University of Medical Science.

AUTHOR CONTRIBUTIONS

NK and SH designed the research. KD, TF, NK, NM, and SH

performed the research. KD, NK, and SH analyzed the data and

prepared the manuscript. KI and SH supervised the research.

FUNDING

This work was supported by Grants-in-Aid for Scientific

Research (B) (16H04671) (SH) and Grants-in-Aid for Scientific

Research (C) (15K08669 and 18K07390) (NK) from the Ministry

of Education, Culture, Sports, Science and Technology of Japan,

and by the SENSHIN Medical Research Foundation (SH).

ACKNOWLEDGMENTS

We thank K. Inaba, R. Taguchi, M. Tomoeda, and M. Mori for

technical assistance.

Akers, K. G., Martinez-Canabal, A., Restivo, L., Yiu, A. P., De Cristofaro, A.,

Hsiang, H. L. L., et al. (2014). Hippocampal neurogenesis regulates forgetting

during adulthood and infancy. Science 344, 598–602. doi: 10.1126/science.

1248903

Alonso, M., Viollet, C., Gabellec, M. M., Meas-Yedid, V., Olivo-Marin, J. C., and

Lledo, P. M. (2006). Olfactory discrimination learning increases the survival

of adult-born neurons in the olfactory bulb. J. Neurosci. 26, 10508–10513.

doi: 10.1523/jneurosci.2633-06.2006

Alvarez-Buylla, A., and Garcıa-Verdugo, J. M. (2002). Neurogenesis in adult

subventricular zone. J. Neurosci. 22, 629–634. doi: 10.1523/jneurosci.22-0300629.2002

Anacker, C., Luna, V. M., Stevens, G. S., Millette, A., Shores, R., Jimenez, J. C.,

et al. (2018). Hippocampal neurogenesis confers stress resilience by inhibiting

the ventral dentate gyrus. Nature 559, 98–102. doi: 10.1038/s41586-018-0262-4

Barha, C. K., Brummelte, S., Lieblich, S. E., and Galea, L. A. (2011). Chronic

restraint stress in adolescence differentially influences hypothalamic-pituitaryadrenal axis function and adult hippocampal neurogenesis in male and female

rats. Hippocampus 21, 1216–1227. doi: 10.1002/hipo.20829

Frontiers in Neuroscience | www.frontiersin.org

12

January 2020 | Volume 14 | Article 22

Daun et al.

Neurogenesis After Early Life Stress

Cohen, M. M., Jing, D., Yang, R. R., Tottenham, N., Lee, F. S., and Casey, B. (2013).

Early-life stress has persistent effects on amygdala function and development in

mice and humans. Proc. Natl. Acad. Sci. U.S.A. 110, 18274–18278. doi: 10.1073/

pnas.1310163110

Coles-Takabe, B. L., Brain, I., Purpura, K. A., Karpowicz, P., Zandstra, P. W.,

Morshead, C. M., et al. (2008). Don’t look: growing clonal versus nonclonal

neural stem cell colonies. Stem Cells 26, 2938–2944. doi: 10.1634/stemcells.

2008-0558

Duman, R. S., Malberg, J., and Nakagawa, S. (2001). Regulation of adult

neurogenesis by psychotropic drugs and stress. J. Pharmacol. Exp. Ther. 299,

401–407.

Fodor, A., and Zelena, D. (2014). The effect of maternal stress activation on the

offspring during lactation in light of vasopressin. Sci. World J. 2014:265394.

doi: 10.1155/2014/265394

Fowler, C. D., Liu, Y., and Wang, Z. (2008). Estrogen and adult neurogenesis in

the amygdala and hypothalamus. Brain Res. Rev. 57, 342–351. doi: 10.1016/j.

brainresrev.2007.06.011

Franklin, T. B., Saab, B. J., and Mansuy, I. M. (2012). Neural mechanisms of stress

resilience and vulnerability. Neuron 75, 747–761. doi: 10.1016/j.neuron.2012.

08.016

Gage, F. H. (2000). Mammalian neural stem cells. Science 287, 1433–1438. doi:

10.1126/science.287.5457.1433

Gao, A., Xia, F., Guskjolen, A. J., Ramsaran, A. I., Santoro, A., Josselyn, S. A., et al.

(2018). Elevation of hippocampal neurogenesis induces a temporally graded

pattern of forgetting of contextual fear memories. J. Neurosci. 38, 3190–3198.

doi: 10.1523/JNEUROSCI.3126-17.2018

Gluckman, P. D., Hanson, M. A., and Beedle, A. S. (2007). Early life events and

their consequences for later disease: a life history and evolutionary perspective.

Am. J. Hum. Biol. 19, 1–19. doi: 10.1002/ajhb.20590

Higashi, M., Maruta, N., Bernstein, A., Ikenaka, K., and Hitoshi, S. (2008). Mood

stabilizing drugs expand the neural stem cell pool in the adult brain through

activation of notch signaling. Stem Cells 26, 1758–1767. doi: 10.1634/stemcells.

2007-1032

Hitoshi, S., Maruta, N., Higashi, M., Kumar, A., Kato, N., and Ikenaka, K. (2007).

Antidepressant drugs reverse the loss of adult neural stem cells following

chronic stress. J. Neurosci. Res. 85, 3574–3585. doi: 10.1002/jnr.21455

Hitoshi, S., Seaberg, R. M., Koscik, C., Alexson, T., Kusunoki, S., Kanazawa, I., et al.

(2004). Primitive neural stem cells from the mammalian epiblast differentiate to

definitive neural stem cells under the control of Notch signaling. Genes Dev. 18,

1806–1811. doi: 10.1101/gad.1208404

Ishikawa, R., Fukushima, H., Frankland, P. W., and Kida, S. (2016). Hippocampal

neurogenesis enhancers promote forgetting of remote fear memory after

hippocampal reactivation by retrieval. eLife 5:e17464. doi: 10.7554/eLife.17464

Jhaveri, D., Tedoldi, A., Hunt, S., Sullivan, R., Watts, N., Power, J., et al. (2018).

Evidence for newly generated interneurons in the basolateral amygdala of adult

mice. Mol. Psychiatry 23, 521–532. doi: 10.1038/mp.2017.134

Kawakami, S. E., Quadrons, I. M. H., Takahashi, S., and Suchecki, D. (2007). Long

maternal separation accelerates behavioral sensitization to ethanol in female,

but not in male mice. Behav. Brain Res. 184, 109–116. doi: 10.1016/j.bbr.2007.

06.023

Kempermann, G. (2012). New neurons for ‘survival of the fittest’. Nat. Rev.

Neurosci. 13, 727–736. doi: 10.1038/nrn3319

Kempermann, G., Jessberger, S., Steiner, B., and Kronenberg, G. (2004). Milestones

of neuronal development in the adult hippocampus. Trends Neurosci. 27,

447–452. doi: 10.1016/j.tins.2004.05.013

Kippin, T. E., Cain, S. W., Masum, Z., and Ralph, M. R. (2004). Neural stem cells

show bidirectional experience-dependent plasticity in the perinatal mammalian

brain. J. Neurosci. 24, 2832–2836. doi: 10.1523/jneurosci.0110-04.2004

LeDoux, J. E. (2000). Emotion circuits in the brain. Annu. Rev. Neurosci. 23,

155–184. doi: 10.1146/annurev.neuro.23.1.155

Lee, J. C. D., Yau, S. Y., Lee, T. M., Lau, B. W. M., and So, K. F. (2016). Voluntary

wheel running reverses the decrease in subventricular zone neurogenesis

caused by corticosterone. Cell Transplant. 25, 1979–1986. doi: 10.3727/

096368916X692195

Levine, S. (2002). Regulation of the hypothalamic-pituitary-adrenal axis in the

neonatal rat: the role of maternal behavior. Neurotox. Res. 4, 557–564. doi:

10.1080/10298420290030569

Frontiers in Neuroscience | www.frontiersin.org

Lieberwirth, C., Pan, Y., Liu, Y., Zhang, Z., and Wang, Z. (2016). Hippocampal

adult neurogenesis: Its regulation and potential role in spatial learning

and memory. Brain Res. 1644, 127–140. doi: 10.1016/j.brainres.2016.

05.015

Lim, D. A., and Alvarez-Buylla, A. (2016). The adult ventricular-subventricular

zone (V-SVZ) and olfactory bulb (OB) neurogenesis. Cold Spring Harb.

Perspect. Biol. 8:a018820. doi: 10.1101/cshperspect.a018820

Liu, D., Caldji, C., Sharma, S., Plotsky, P., and Meaney, M. (2000). Influence

of neonatal rearing conditions on stress-induced adrenocorticotropin

responses and norepinephrine release in the hypothalamic paraventricular

nucleus. J. Neuroendocrinol. 12, 5–12. doi: 10.1046/j.1365-2826.2000.00

422.x

Macrì, S. (2017). Neonatal corticosterone administration in rodents as a tool to

investigate the maternal programming of emotional and immune domains.

Neurobiol. Stress 6, 22–30. doi: 10.1016/j.ynstr.2016.12.001

Malberg, J. E. (2004). Implications of adult hippocampal neurogenesis in

antidepressant action. J. Psychiatry Neurosci. 29, 196–205.

Ming, G. I., and Song, H. (2011). Adult neurogenesis in the mammalian brain:

significant answers and significant questions. Neuron 70, 687–702. doi: 10.1016/

j.neuron.2011.05.001

Mirescu, C., Peters, J. D., and Gould, E. (2004). Early life experience alters response

of adult neurogenesis to stress. Nat. Neurosci. 7, 841–846. doi: 10.1038/nn

1290

Mishra, P. L., Kutty, B. M., and Laxmi, T. R. (2019). The impact of maternal

separation and isolation stress during stress hyporesponsive period on fear

retention and extinction recall memory from 5-week- to 1-year-old rats. Exp.

Brain Res. 237, 181–190. doi: 10.1007/s00221-018-5411-3

Mitra, R., Adamec, R., and Sapolsky, R. (2009). Resilience against predator stress

and dendritic morphology of amygdala neurons. Behav. Brain Res. 205, 535–

543. doi: 10.1016/j.bbr.2009.08.014

Neef, A. B., and Luedtke, N. W. (2011). Dynamic metabolic labeling of DNA in vivo

with arabinosyl nucleosides. Proc. Natl. Acad. Sci. U.S.A. 108, 20404–20409.

doi: 10.1073/pnas.1101126108

Nishi, M., Horii-Hayashi, N., and Sasagawa, T. (2014). Effects of early life adverse

experiences on the brain: implications from maternal separation models in

rodents. Front. Neurosci. 8:166. doi: 10.3389/fnins.2014.00166

Pan, Y. W., Chan, G. C. K., Kuo, C. T., Storm, D. R., and Xia, Z. (2012). Inhibition

of adult neurogenesis by inducible and targeted deletion of ERK5 mitogenactivated protein kinase specifically in adult neurogenic regions impairs

contextual fear extinction and remote fear memory. J. Neurosci. 32, 6444–6455.

doi: 10.1523/JNEUROSCI.6076-11.2012

Paz, R., Pelletier, J. G., Bauer, E. P., and Paré, D. (2006). Emotional enhancement of

memory via amygdala-driven facilitation of rhinal interactions. Nat. Neurosci.

9, 1321–1329. doi: 10.1038/nn1771

Pfau, M. L., and Russo, S. J. (2015). Peripheral and central mechanisms

of stress resilience. Neurobiol. Stress 1, 66–79. doi: 10.1016/j.ynstr.2014.

09.004

Phillips, R., and LeDoux, J. (1992). Differential contribution of amygdala and

hippocampus to cued and contextual fear conditioning. Behav. Neurosci. 106,

274–285. doi: 10.1037/0735-7044.106.2.274

Raponi, E., Agenes, F., Delphin, C., Assard, N., Baudier, J., Legraverend, C., et al.

(2007). S100B expression defines a state in which GFAP-expressing cells lose

their neural stem cell potential and acquire a more mature developmental stage.

Glia 55, 165–177. doi: 10.1002/glia.20445

Reynolds, B. A., and Weiss, S. (1992). Generation of neurons and astrocytes from

isolated cells of the adult mammalian central nervous system. Science 255,

1707–1710. doi: 10.1126/science.1553558

Sandi, C., and Haller, J. (2015). Stress and the social brain: behavioural effects and

neurobiological mechanisms. Nat. Rev. Neurosci. 16, 290–304. doi: 10.1038/

nrn3918

Santarelli, S., Lesuis, S. L., Wang, X. D., Wagner, K. V., Hartmann, J., Labermaier,

C., et al. (2014). Evidence supporting the match/mismatch hypothesis of

psychiatric disorders. Eur. Neuropsychopharmacol. 24, 907–918. doi: 10.1016/

j.euroneuro.2014.02.002

Schmidt, M., Enthoven, L., Van Der Mark, M., Levine, S., De Kloet, E., and Oitzl,

M. (2003). The postnatal development of the hypothalamic–pituitary–adrenal

axis in the mouse. Int. J. Dev. Neurosci. 21, 125–132.

13

January 2020 | Volume 14 | Article 22

Daun et al.

Neurogenesis After Early Life Stress

Seaberg, R. M., and van der Kooy, D. (2002). Adult rodent neurogenic regions:

the ventricular subependyma contains neural stem cells, but the dentate gyrus

contains restricted progenitors. J. Neurosci. 22, 1784–1793. doi: 10.1523/

jneurosci.22-05-01784.2002

Shors, T. J., Miesegaes, G., Beylin, A., Zhao, M., Rydel, T., and Gould, E. (2001).

Neurogenesis in the adult is involved in the formation of trace memories.

Nature 410, 372–376. doi: 10.1038/35066584

Soma, M., Aizawa, H., Ito, Y., Maekawa, M., Osumi, N., Nakahira, E., et al. (2009).

Development of the mouse amygdala as revealed by enhanced green fluorescent

protein gene transfer by means of in utero electroporation. J. Comp. Neurol. 513,

113–128. doi: 10.1002/cne.21945

Suri, D., Veenit, V., Sarkar, A., Thiagarajan, D., Kumar, A., Nestler, E. J., et al.

(2013). Early stress evokes age-dependent biphasic changes in hippocampal

neurogenesis, BDNF expression, and cognition. Biol. Psychiatry 73, 658–666.

doi: 10.1016/j.biopsych.2012.10.023

van Praag, H., Kempermann, G., and Gage, F. H. (1999). Running increases cell

proliferation and neurogenesis in the adult mouse dentate gyrus. Nat. Neurosci.

2, 266–270. doi: 10.1038/6368

Frontiers in Neuroscience | www.frontiersin.org

Youssef, M., Atsak, P., Cardenas, J., Kosmidis, S., Leonardo, E. D., and Dranovsky,

A. (2019). Early life stress delays hippocampal development and diminishes the

adult stem cell pool in mice. Sci. Rep. 9:4120. doi: 10.1038/s41598-019-40868-0

Zimmerberg, B., and Sageser, K. A. (2011). Comparison of two rodent models

of maternal separation on juvenile social behavior. Front. Psychiatry 2:39. doi:

10.3389/fpsyt.2011.00039

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Daun, Fuchigami, Koyama, Maruta, Ikenaka and Hitoshi. This

is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

14

January 2020 | Volume 14 | Article 22

...

参考文献をもっと見る