リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Redistribution of ionic species of the true congruent-melting LiNbO3 with stoichiometric structure during crystallization」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Redistribution of ionic species of the true congruent-melting LiNbO3 with stoichiometric structure during crystallization

Shi Qilin 東北大学

2021.03.25

概要

1.1 Crystal growth from LiNbO3 melt
LiNbO3 (LN) crystal is a ferroelectric material and belongs to the trigonal structure, which has attracted much attention because it can be applied to non- linear optical devices due to its excellent non-linear optical properties [1]. It is also applied to substrates for surface acoustic wave (SAW) devices because of its low acoustic losses [2]. To obtain a single crystal with uniform compositional distribution, LN is generally grown from a congruent melt (c-LN), of which the composition is Li2O:Nb2O5 = 48.38:51.62 mol% [3].

The crystallization process is a central topic for LN single crystals. During crystal growth from the melt (Fig. 1.1), it consists of three parts: bulk melt, interface and crystal. The transport and partitioning of solute occur at the interface, strongly affecting the variation of solute concentration in the crystal. Therefore, the research on the solid-liquid interface is significant. The segregation of solute is evaluated by the equilibrium partitioning coefficient k0, which is expressed as where XS and XL are the mole fractions of solute in the solid and liquid in equilibrium at a given temperature. As shown in Fig. 1.2, the degree of freedom (f) is zero at the congruent point and the equilibrium partitioning coefficient of solute is unity (𝑘Li2O = 1), that is, the solute concentration in the liquid equals that in the crystal. If k0 is not unity, the segregation of solute occurs at the solid-liquid interface and thus the solute concentration in the grown crystal is different in the bulk melt. When 𝑘Li2O > 1, the Li2O concentration in the solid is larger than that in the liquid; when 𝑘Li2O < 1, the Li2O concentration in the solid is smaller than that in the liquid.

この論文で使われている画像

参考文献

[1] R.S. Weis, T.K. Gaylord, Appl. Phys. A 37 (1985) 191.

[2] T. Volk, M. Wöhlecke. Lithium niobate: defects, photorefraction and ferroelectric switching. Springer Science & Business Media, 2008.

[3] P. F. Bourdi, R. G. Norwood, C. D. Bird, G. D. Calvert, J. Cryst. Growth 113 (1991) 61.

[4] LO. Svaasand, M. Eriksrud, G. Nakken, AP. Grande, J. Cryst. Growth 1974, 22:179.

[5] 宮澤信太郎 著, 共立出版株式会社 結晶成長のダイナミクス第 5 巻, メルト成長のダイナミクス.

[6] V.A. D’yakov, D.P. Shamov, L.N. Rashkovich, A.L. Aleksandrovskii, Bull. Acad. Sci. USSR, Phys. Ser. 49 (1985) 117

[7] S. Uda, T. Tsubota, J. Cryst. Growth 312 (2010) 3650.

[8] J.C. Ribeiro, Anis Acad. Brasil. Cienc. 17 (1945) 3.

[9] S. Mascarenhas, L.G. Freitas, J. Appl. Phys. 31 (1960) 1684.

[10] E.J. Workman, S.E. Reynolds, Phys. Rev. 78 (1950) 254.

[11] B.K. Jindal, W.A. Tiller, Surface Science 9 (1968) 137.

[12] S. Uda, W.A. Tiller, J. Cryst. Growth 121 (1992) 155.

[13] H. Kimura, S. Uda, J. Cryst. Growth 311 (2009) 4094.

[14] Y. Azuma, S. Uda, J. Cryst. Growth 306 (2007) 217.

[15] A.L. Aleksandrovskii, D.P. Shumov, Cryst. Res. Technol. 25 (1990) 1239.

[16] S. Koh, S. Uda, M. Nishida, X. Huang, J. Cryst. Growth 297 (2006) 247.

[17] J. Nozawa, S. Iida, C. Koyama, K. Maeda, K. Fujiwara, S. Uda, J. Cryst. Growth 406 (2014) 78.

[18] G. Bergmann, Sol. State Commun. 6 (1968) 77.

[19] P.J. Jorgensen, R.W. Bartlett, J. Phys. Chem. Solids 30 (1969) 2639.

[20] W.A. Tiller, S. Uda, J. Cryst. Growth 129 (1993) 341.

[21] K. Nassau, H.J. Levinstein, G.M. Loiacono, Appl. Phys. Lett. 6 (1965) 228.

[22] K. Nassau, H.J. Levinstein, Appl. Phys. Lett. 7 (1965) 69.

[23] K. Nassau, H.J. Levinstein, G.M. Loiacono, J. Phys. Chem. Solids 27 (1966) 989.

[24] S. Uda, J. Kon, K. Shimamura, T. Fukuda, J. Crystal Growth 167 (1996) 64.

[25] S. Uda, J. Kon, J. Ichikawa, K. Inaba, K. Shimamura, T. Fukuda, J. Cryst. Growth 179 (1997) 567.

[26] S. Uda, “Stoichiometry of oxide crystals,” in Handbook of Crystal Growth: Fundamentals, 2nd ed., edited by T. Nishinaga (Elsevier, 2014), Vol. IA, Chap. 4.

[27] S. Uda, J. Cryst. Growth 310 (2008) 3864.

[28] H. Kimura, T. Taniuchi, S. Iida, S. Uda, J. Cryst. Growth 312 (2010) 3425.

[29] Y. Furukawa, K. Kitamura, S. Takekawa, Opt. Lett. 23 (1998) 1892.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る