リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Synthesis and characterization of Mono-disperse Carbon Quantum Dots from Fennel seeds: Photoluminescence analysis using Machine Learning」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Synthesis and characterization of Mono-disperse Carbon Quantum Dots from Fennel seeds: Photoluminescence analysis using Machine Learning

横浜市立大学

2020.06.30

概要

Herein, we present the synthesis of mono-dispersed c-QDs via single-step thermal decomposition process using the fennel seeds (Foeniculum vulgare). As synthesized c-QDs have excellent colloidal, photo-stability, environmental stability (pH) and do not require any additional surface passivation step to improve the fluorescence. The C-QDs show excellent PL activity and excitation-independent emission. Synthesis of excitation- independent c-QDs, to the best of our knowledge, using natural carbon source via pyrolysis process has never been achieved before. The effect of reaction time and temperature on pyrolysis provides insight into the synthesis of c-QDs. We used Machine-learning techniques (ML) such as pcA, McR-ALS, and nMf-ARD-So in order to provide a plausible explanation for the origin of the pL mechanism of as-synthesized c-QDs. ML techniques are capable of handling and analyzing the large pL data-set, and institutively recommend the best excitation wavelength for pL analysis. Mono-disperse c-QDs are highly desirable and have a range of potential applications in bio- sensing, cellular imaging, LeD, solar cell, supercapacitor, printing, and sensors.

この論文で使われている画像

参考文献

1. Wang, Y. & Hu, A. Carbon quantum dots: synthesis, properties and applications. J. Mater. Chem. C. 2, 6921–6939 (2014).

2. Liu, H. et al. Synthesis of Luminescent Carbon Dots with Ultrahigh Quantum Yield and Inherent Folate ReceptorPositive Cancer Cell Targetability. Sci Rep. 8, 1086 (2018).

3. Xu, X. et al. Scrivens, Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments. J. Am. Chem. Soc. 126(40), 12736–12737 (2004).

4. Li, X. et al. Preparation of carbon quantum dots with tunable photoluminescence by rapid laser passivation in ordinary organic solvents. Chem. Commun. 47(3), 932–934 (2010).

5. J. Wang et al. RSC Adv. 3, 15604 (2013).

6. Zhu, C., Zhaia, A. J. & Dong, S. Bifunctional fluorescent carbon nanodots: green synthesis via soy milk and application as metal-free electrocatalysts for oxygen reduction. Chem. Commun. 48, 9367–9369 (2012).

7. Ma, C.-B. et al. Nanoscale 7, 10162 (2015).

8. Suzuki, K. et al. Design of Carbon Dots Photoluminescence through Organo-Functional Silane Grafting for Solid-State Emitting Devices. Sci Rep. 7, 5469 (2017).

9. Khan, W. U. et al. High Quantum Yield GreenEmitting Carbon Dots for Fe(ІІІ) Detection, Biocompatible Fluorescent Ink and Cellular Imaging. Sci Rep. 7, 14866 (2017).

10. Chen, B. B. et al. A large-scale synthesis of photoluminescent carbon quantum dots: self-exothermic reaction driving-formed nanocrystalline core at room temperature. Green Chem. 18, 5127 (2016).

11. Regina, C. et al. Gram-Scale Synthesis and Kinetic Study of Bright Carbon Dots from Citric Acid and Citrus japonica via a Microwave-Assisted Method. ACS Omega 2, 5196–5208 (2017).

12. Meiling, T. T., Cywiński, P. J. & Bald, I. White carbon: Fluorescent carbon nanoparticles with tunable quantum yield in a reproducible green synthesis. Sci Rep. 6, 28557 (2016).

13. Guo, X., Zhang, H., Sun, H., Tade, M. O. & Wang, S. Green Synthesis of Carbon Quantum Dots for Sensitized Solar Cells. ChemPhotoChem 1, 116–119 (2017).

14. Qiao-LingChen, W.-Q. J. & Chen, S. Direct Synthesis of Multicolor Fluorescent Hollow Carbon Spheres Encapsulating Enriched Carbon Dots. Sci Rep. 6, 19382 (2016).

15. Zhao, Y. et al. Novel carbon quantum dots from egg yolk oil and their haemostatic effects. Sci Rep. 7, 4452 (2017).

16. Liu, X., Pang, J., Xu, F. & Zhang, X. Simple Approach to Synthesize Amino-Functionalized Carbon Dots by Carbonization of Chitosan. Sci Rep. 6, 31100 (2016).

17. Dong, Y. et al. Natural carbon-based dots from humic substances. Sci Rep. 5, 10037 (2015).

18. Guo, Y., Zhang, L., Cao, F. & Leng, Y. Thermal treatment of hair for the synthesis of sustainable carbon quantum dots and the applications for sensing Hg2+. Sci Rep. 6, 35795 (2016).

19. Xue, M., Zhan, Z., Zou, M., Liangliang, zhang & Zhaoa, S. Green synthesis of stable and biocompatible fluorescent carbon dots from peanut shell for multicolor living cell imaging. New J. Chem. 40, 1698–1703 (2016).

20. Pires, N. R. et al. Novel and Fast Microwave-Assisted Synthesis of Carbon Quantum Dots from Raw Cashew Gum. J. Braz. Chem. Soc. 26(6), 1274–1282 (2015).

21. Zhao, S. et al. Green Synthesis of Bifunctional Fluorescent Carbon Dots from Garlic for Cellular Imaging and Free Radicals Scavenging. ACS Appl. Mater. Interfaces 7, 17054–17060 (2015).

22. Qu, D. et al. Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts. Nanoscale 5(24), 12272 (2013).

23. Martindale, B. C. M., Hutton, G. A. M., Caputo, C. A. & Reisner, E. Solar Hydrogen Production Using Carbon Quantum Dots and a Molecular Nickel Catalyst. J. Am. Chem. Soc. 137(18), 6018–6025 (2015).

24. Parvin, N. & Mandal, T. K. Synthesis of Highly Fluorescence Nitrogen Doped Carbon Quantum Dots Bioimaging Probe, and its in vivo Clearance and Printing Applications. RSC Adv. 6, 18134–18140 (2016).

25. Zhang, J. et al. A nitrogen doped carbon quantum dot-enhanced chemiluminescence method for the determination of Mn2+. Anal. Methods 10, 541 (2018).

26. Felten, J. et al. Vibrational, Spectroscopic image analysis of biological material using multivariate curve resolution–alternating least squares (MCR-ALS). Nature Protocols., 10, 217–240 (2015).

27. Peter Mirtchev, E. J., Henderson, N. & Soheilnia, C. M. Yipc and Geoffrey A. Ozin, Solution phase synthesis of carbon quantum dots as sensitizers for nanocrystalline TiO2 solar cells†. J. Mater. Chem. 22, 1265 (2012).

28. Tang, Q., Zhu, W., He, B. & Yang, P. Rapid Conversion from Carbohydrates to Large-Scale Carbon Quantum Dots for AllWeather Solar Cells. ACS Nano 11, 1540–1547 (2017).

29. Chen, G. et al. Assembling carbon quantum dots to a layered carbon for high-density supercapacitor electrodes. Sci Rep. 6, 19028 (2016).

30. Zhu, S. et al. Highly Photoluminescent Carbon Dots for Multicolor Patterning, Sensors, and Bioimaging. Angew. Chem. 52, 3953–3957 (2013).

31. Dong, Y. et al. Polyamine-Functionalized Carbon Quantum Dots as Fluorescent Probes for Selective and Sensitive Detection of Copper Ions. Anal. Chem. 84(14), 6220–6224 (2012).

32. Tuerhong, Mhetaer, Yang, X. U. & Xue-Bo, Y. I. N. Review on Carbon Dots and Their Applications. Chin J. Anal. Chem. 45(1), 139–150 (2017).

33. Baliyan, A. et al. Synthesis of an Ultradense Forest of Vertically Aligned Triple-Walled Carbon Nanotubes of Uniform Diameter and Length Using Hollow Catalytic Nanoparticles. J. Am. Chem. Soc. 136(3), 1047–1053 (2014).

34. Hua Wang, C., Sun, X., Chen, Y., Zhang & Vicki, L. Colvin, Quinton Rice, Jaetae Seo, Shengyu Feng, Shengnian Wangb and William W. Yu, Excitation wavelength independent visible color emission of carbon dots. Nanoscale 9, 1909 (2017).

35. Sun, Y. et al. Quantum-Sized Carbon Dots for Bright and Colorful Photoluminescence. J. Am. Chem. Soc. 128, 7756–7757 (2006).

36. Liua, M. L. et al. Large-scale simultaneous synthesis of highly photoluminescent green amorphous carbon nanodots and yellow crystalline graphene quantum dots at room temperature. Green Chem. 19, 3611–3617 (2017).

37. Demchenko, A. P. & Dekaliuk, M. O. The origin of emissive states of carbon nanoparticles derived from ensemble-averaged and single-molecular studies. Nanoscale 8, 14057–14069 (2016).

38. Gan, Z., Xu, H. & Hao, Y. Mechanism for excitation-dependent photoluminescence from graphene quantum dots and other graphene oxide derivates: consensus, debates and challenges. Nanoscale 8, 7794–7807 (2016).

39. Dong, Y. et al. Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon 50, 4738–4743 (2012).

40. Ding, H., Yu, S.-B., Wei, J.-S. & Xiong, H.-M. Full-Color Light-Emitting Carbon Dots with a Surface-State-Controlled Luminescence Mechanism. ACS Nano 10, 484–491 (2015).

41. Zhang, Y. et al. Excitation Wavelength Independence: Toward Low-Threshold Amplified Spontaneous Emission from Carbon Nanodots. ACS Applied Materials & Interfaces 8, 25454–25460 (2016).

42. Li, L. & Dong, T. Photoluminescence tuning in carbon dots: surface passivation or/and functionalization, heteroatom doping. J. Mater. Chem. C. 6, 7944–7970 (2018).

43. Liu, M. L., Chen, B. B., Li, C. M. & Huang, C. Z. Carbon dots: synthesis, formation mechanism, fluorescence origin and sensing applications. Green Chemistry. 21, 449 (2019).

44. Mintz, K. J., Zhou, Y. & Leblanc, R. Recent Development of Carbon Quantum Dots Regarding their Optical Properties, Photoluminescence Mechanism, and Core Structure. Nanoscale. 11, 4634 (2019).

45. Schneider, J. et al. Molecular Fluorescence in Citric Acid-Based Carbon Dots. J. Phys. Chem. C 121, 2014–2022 (2017).

46. Reckmeier, C. J. et al. Aggregated Molecular Fluorophores in the Ammonothermal Synthesis of Carbon Dots. Chemistry of Materials 29, 10352–10361 (2017).

47. Khan, S. et al. Small molecular organic nanocrystals resemble carbon nanodots in terms of their properties. Chemical Science 9, 175–180 (2018).

48. Fu, M. et al. Carbon Dots: A Unique Fluorescent Cocktail of Polycyclic Aromatic Hydrocarbons. Nano Letters 15, 6030–6035 (2015).

49. Zhou, Y. et al. Photoluminescent Carbon Dots: A Mixture of Heterogeneous Fractions. ChemPhysChem. 19, 2589–2597 (2018).

50. Maslova, O. A. et al. Raman imaging and principal component analysis-based data processing on uranium oxide ceramics. Mater. Charact. 129, 260–269 (2017).

51. Shiga, M. et al. Sparse modeling of EELS and EDX spectral imaging data by nonnegative matrix factorization. Ultramicroscopy 170, 43–59 (2016).

参考文献をもっと見る