リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「星形成過程の円盤初期進化段階におけるダストのダイナミクスと惑星形成への示唆」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

星形成過程の円盤初期進化段階におけるダストのダイナミクスと惑星形成への示唆

古賀, 駿大 KOGA, Shunta コガ, シュンタ 九州大学

2022.03.23

概要

Stars form in molecular cloud cores composed of gas and dust particles, and it is understood that planetary nuclei, which are dust particle aggregates, appear within the rotationally supported disks that grow in star formation processes. However, while the dynamics of dust in star formation processes have been investigated in both theoretical and observa- tional studies, they remain poorly understood because of the dust property uncertainties. Accordingly, this study proposes a method for calculating dust particle trajectories in which dust particles are treated as Lagrangian particles. I then implement my method in a previously developed nested grid code in which the local physical quantities of gas fluid are used to calculate dust dynamics. More specifically, I perform three-dimensional (3D) magnetohydrodynamic (MHD) simulations that include dust particle trajectory calcula- tions to investigate dust dynamics in a collapsing cloud with variously-sized dust particles. I then show that the obtained results are qualitatively and quantitatively consistent with previous studies that adopted one- or two-fluid approximations with the Eulerian approach. I also find that dust particles that satisfy ad ≤ 10 µm (where ad is the dust particle size) couple with the gas during gravitational collapse until the protostellar mass reaches about 8% of the initial cloud core mass. This coupling condition is also consistent with previous studies. Next, I show that the trajectory calculation adopted in this study is appropriate for tracing dust dynamics in star formation processes. Then, focusing on the trajectories of the dust particles in the disk, I determine that dust particles with an initial large θ (θ is the zenith angle) enter the disk from the equatorial plane rather than from the above, and that such dust particles do not spiral down into the central star even though they move in a circular motion. Furthermore, while the gas within 10 au loses its angular momentum, the gas beyond that distance receives angular momentum due to gravitational torque. Thus, dust particles that are strongly coupled with gas at a distance of around 10 au move also undergo circular motion.

参考文献

Ansdell, M.., Williams, J. P.., van der Marel, N.., et al. 2016, ApJ, 828, 46, doi: 10.3847/ 0004-637X/828/1/46

Aso, Yusuke., & Machida, Masahiro N.. 2020, ApJ, 905, 174, doi: 10.3847/1538-4357/ abc6fc

Bai, Xue-Ning., & Stone, James M.. 2010, ApJ, 722, 1437, doi: 10.1088/0004-637X/ 722/2/1437

Bate, Matthew R.., & Lorén-Aguilar, Pablo. 2017, MNRAS, 465, 1089, doi: 10.1093/ mnras/stw2853

Beitia-Antero, Leire., Gómez de Castro, Ana I.., & Vallejo, Juan C.. 2021, ApJ, 908, 112, doi: 10.3847/1538-4357/abcda1

Brauer, F.., Dullemond, C. P.., & Henning, Th.. 2008, A&A, 480, 859, doi: 10.1051/ 0004-6361:20077759

Draine, B. T.., & Sutin, B.. 1987, ApJ, 320, 803, doi: 10.1086/165596

Dzyurkevich, Natalia., Commerçon, Benoît., Lesaffre, Pierre., & Semenov, Dimitry. 2017, A&A, 603, A105, doi: 10.1051/0004-6361/201628995

Epstein, Paul S.. 1924, Physical Review, 23, 710, doi: 10.1103/PhysRev.23.710

Flock, Mario., & Mignone, Andrea. 2021, A&A, 650, A119, doi: 10.1051/0004-6361/ 202040104

Furuya, Kenji., Aikawa, Yuri., Tomida, Kengo., et al. 2012, ApJ, 758, 86, doi: 10.1088/ 0004-637X/758/2/86

Galametz, M.., Maury, A. J.., Valdivia, V.., et al. 2019, A&A, 632, A5, doi: 10.1051/ 0004-6361/201936342

Guillet, V.., Hennebelle, P.., Pineau des Forêts, G.., et al. 2020, A&A, 643, A17, doi: 10.1051/0004-6361/201937387

Guzmán, Viviana V.., Huang, Jane., Andrews, Sean M.., et al. 2018, ApJ, 869, L48, doi: 10.3847/2041-8213/aaedae

Hayashi, C.. 1981, Progress of Theoretical Physics Supplement, 70, 35, doi: 10.1143/ PTPS.70.35

Hayashi, C.., Nakazawa, K.., & Nakagawa, Y.. 1985, in Protostars and Planets II, ed. D. C. Black & M. S. Matthews, 1100–1153

Hennebelle, P.., & Fromang, S.. 2008, A&A, 477, 9, doi: 10.1051/0004-6361: 20078309

Hildebrand, R. H.. 1983, QJRAS, 24, 267

Huang, Jane., Andrews, Sean M.., Dullemond, Cornelis P.., et al. 2018a, ApJ, 869, L42, doi: 10.3847/2041-8213/aaf740

Huang, Jane., Andrews, Sean M.., Pérez, Laura M.., et al. 2018b, ApJ, 869, L43, doi: 10.3847/2041-8213/aaf7a0

Isella, Andrea., Huang, Jane., Andrews, Sean M.., et al. 2018, ApJ, 869, L49, doi: 10. 3847/2041-8213/aaf747

Johansen, A.., & Youdin, A.. 2007, ApJ, 662, 627, doi: 10.1086/516730

Joos, M.., Hennebelle, P.., & Ciardi, A.. 2012, A&A, 543, A128, doi: 10.1051/ 0004-6361/201118730

Koga, Shunta., Tsukamoto, Yusuke., Okuzumi, Satoshi., & Machida, Masahiro N.. 2019, MNRAS, 484, 2119, doi: 10.1093/mnras/sty3524

Kurtovic, Nicolás T.., Pérez, Laura M.., Benisty, Myriam., et al. 2018, ApJ, 869, L44, doi: 10.3847/2041-8213/aaf746

Kwon, Woojin., Looney, Leslie W.., Mundy, Lee G.., Chiang, Hsin-Fang., & Kemball, Athol J.. 2009, ApJ, 696, 841, doi: 10.1088/0004-637X/696/1/841

Laibe, Guillaume., & Price, Daniel J.. 2012, MNRAS, 420, 2365, doi: 10.1111/j.1365-2966.2011.20201.x

—. 2014, MNRAS, 440, 2147, doi: 10.1093/mnras/stu359

Lebreuilly, U.., Commerçon, B.., & Laibe, G.. 2020, A&A, 641, A112, doi: 10.1051/ 0004-6361/202038174

Lee, Chin-Fei., Hirano, Naomi., Zhang, Qizhou., et al. 2014, ApJ, 786, 114, doi: 10.1088/0004-637X/786/2/114

Li, Jennifer I-Hsiu., Liu, Hauyu Baobab., Hasegawa, Yasuhiro., & Hirano, Naomi. 2017, ApJ, 840, 72, doi: 10.3847/1538-4357/aa6f04

Machida, Masahiro N.., & Hosokawa, Takashi. 2013, MNRAS, 431, 1719, doi: 10.1093/ mnras/stt291

Machida, M. N.., Inutsuka, S.-i.., & Matsumoto, T.. 2007, ApJ, 670, 1198, doi: 10.1086/ 521779

Machida, Masahiro N.., Inutsuka, Shu-ichiro., & Matsumoto, Tomoaki. 2010, ApJ, 724, 1006, doi: 10.1088/0004-637X/724/2/1006

Machida, M. N.., & Matsumoto, T.. 2011, MNRAS, 413, 2767, doi: 10.1111/j.1365-2966.2011.18349.x

Machida, Masahiro N.., & Matsumoto, Tomoaki. 2012, MNRAS, 421, 588, doi: 10.1111/j.1365-2966.2011.20336.x

Machida, Masahiro N.., Tomisaka, Kohji., & Matsumoto, Tomoaki. 2004, MNRAS, 348, L1, doi: 10.1111/j.1365-2966.2004.07402.x

Marchand, P.., Guillet, V.., Lebreuilly, U.., & Mac Low, M. M.. 2021, A&A, 649, A50, doi: 10.1051/0004-6361/202040077

Marchand, P.., Masson, J.., Chabrier, G.., et al. 2016, A&A, 592, A18, doi: 10.1051/ 0004-6361/201526780

Masson, J.., Chabrier, G.., Hennebelle, P.., Vaytet, N.., & Commerçon, B.. 2016, A&A, 587, A32, doi: 10.1051/0004-6361/201526371

Mathis, J. S.., Rumpl, W.., & Nordsieck, K. H.. 1977, ApJ, 217, 425, doi: 10.1086/155591

Miettinen, O.., Harju, J.., Haikala, L. K.., & Juvela, M.. 2012, A&A, 538, A137, doi: 10.1051/0004-6361/201117849

Miotello, A.., Testi, L.., Lodato, G.., et al. 2014, A&A, 567, A32, doi: 10.1051/0004-6361/201322945

Nakano, T.., Nishi, R.., & Umebayashi, T.. 2002, ApJ, 573, 199, doi: 10.1086/340587

Ormel, C. W.., & Cuzzi, J. N.. 2007, A&A, 466, 413, doi: 10.1051/0004-6361:20066899

Ormel, C. W.., Min, M.., Tielens, A. G. G. M.., Dominik, C.., & Paszun, D.. 2011, A&A, 532, A43, doi: 10.1051/0004-6361/201117058

Ormel, C. W.., Paszun, D.., Dominik, C.., & Tielens, A. G. G. M.. 2009, A&A, 502, 845, doi: 10.1051/0004-6361/200811158

Pagani, Laurent., Steinacker, Jürgen., Bacmann, Aurore., Stutz, Amelia., & Henning, Thomas. 2010, Science, 329, 1622, doi: 10.1126/science.1193211

Pérez, Laura M.., Benisty, Myriam., Andrews, Sean M.., et al. 2018, ApJ, 869, L50, doi: 10.3847/2041-8213/aaf745

Price, Daniel J.., & Bate, Matthew R.. 2007, MNRAS, 377, 77, doi: 10.1111/j. 1365-2966.2007.11621.x

Sheehan, Patrick D.., Tobin, John J.., Federman, Sam., Megeath, S. Thomas., & Looney, Leslie W.. 2020, ApJ, 902, 141, doi: 10.3847/1538-4357/abbad5

Silsbee, Kedron., Ivlev, Alexei V.., Sipilä, Olli., Caselli, Paola., & Zhao, Bo. 2020, A&A, 641, A39, doi: 10.1051/0004-6361/202038063

Steinacker, J.., Andersen, M.., Thi, W. F.., & Bacmann, A.. 2014, A&A, 563, A106, doi: 10.1051/0004-6361/201323219

Steinacker, J.., Andersen, M.., Thi, W. F.., et al. 2015, A&A, 582, A70, doi: 10.1051/0004-6361/201425434

Tomida, Kengo., Machida, Masahiro N.., Hosokawa, Takashi., Sakurai, Yuya., & Lin, Chia Hui. 2017, ApJ, 835, L11, doi: 10.3847/2041-8213/835/1/L11

Tomida, K.., Okuzumi, S.., & Machida, M. N.. 2015, ApJ, 801, 117, doi: 10.1088/0004-637X/801/2/117

Tomida, K.., Tomisaka, K.., Matsumoto, T.., et al. 2013, ApJ, 763, 6, doi: 10.1088/0004-637X/763/1/6

Toomre, A.. 1964, ApJ, 139, 1217, doi: 10.1086/147861

Tsukamoto, Y.., Iwasaki, K.., Okuzumi, S.., Machida, M. N.., & Inutsuka, S.. 2015, MNRAS, 452, 278, doi: 10.1093/mnras/stv1290

Tsukamoto, Y.., Machida, M. N.., & Inutsuka, S.. 2021a, ApJ, 913, 148, doi: 10.3847/1538-4357/abf5db

Tsukamoto, Yusuke., Machida, Masahiro N.., & Inutsuka, Shu-ichiro. 2021b, arXiv eprints, arXiv:2109.12779. https://arxiv.org/abs/2109.12779

Tsukamoto, Y.., Machida, M. N.., Susa, H.., Nomura, H.., & Inutsuka, S.. 2020, ApJ, 896, 158, doi: 10.3847/1538-4357/ab93d0

Uehara, Hayato., Dobashi, Kazuhito., Nishiura, Shingo., Shimoikura, Tomomi., & Naoi, Takahiro. 2021, ApJ, 915, 74, doi: 10.3847/1538-4357/ac03b4

Vorobyov, Eduard I.., Akimkin, Vitaly., Stoyanovskaya, Olga., Pavlyuchenkov, Yaroslav., & Liu, Hauyu Baobab. 2018, A&A, 614, A98, doi: 10.1051/0004-6361/201731690

Weidenschilling, S. J.. 1977, MNRAS, 180, 57, doi: 10.1093/mnras/180.2.57

Wurster, J.., Price, D. J.., & Bate, M. R.. 2016, MNRAS, 457, 1037, doi: 10.1093/mnras/stw013

Zhao, B.., Caselli, P.., & Li, Z.-Y.. 2018, MNRAS, 478, 2723, doi: 10.1093/mnras/sty1165

Zhao, Bo., Caselli, Paola., Li, Zhi-Yun., et al. 2021, MNRAS, 505, 5142, doi: 10.1093/mnras/stab1295

Zhao, B.., Caselli, P.., Li, Z.-Y.., et al. 2016, MNRAS, 460, 2050, doi: 10.1093/mnras/stw1124

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る