リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「In Situ Synthesis of an Anticancer Peptide Amphiphile Using Tyrosine Kinase Overexpressed in Cancer Cells」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

In Situ Synthesis of an Anticancer Peptide Amphiphile Using Tyrosine Kinase Overexpressed in Cancer Cells

Morita, Kenta Nishimura, Kanon Yamamoto, Shota Shimizu, Natsumi Yashiro, Tomoko Kawabata, Ryoko Aoi, Takashi Tamura, Atsuo Maruyama, Tatsuo 神戸大学

2022.09.26

概要

Cell-selective killing using molecular self-assemblies is an emerging concept for cancer therapy. Reported molecular self-assemblies are triggered by hydrolysis of well-designed molecules inside or outside cancer cells. This hydrolysis can occur in cancer and normal cells because of the abundance of water in living systems. Here, we report the in situ synthesis of a self-assembling molecule using a tyrosine kinase overexpressed in cancer cells. We designed a tyrosine-containing peptide amphiphile (C16-E4Y) that is transformed into a phosphorylated peptide amphiphile (C16-E4pY) by the overexpressed tyrosine kinase. Phosphorylation of C16-E4Y promoted self-assembly to form nanofibers in cancer cells. C16-E4Y exhibited selective cytotoxicity toward cancer cells overexpressing the tyrosine kinase. Self-assembled C16-E4pY induced endoplasmic reticulum stress that caused apoptotic cell death. Animal experiments revealed that C16-E4Y has antitumor activity. These results show that an enzyme overexpressed in cancer cells is available for intracellular synthesis of an antitumor self-assembling drug that is cell-selective.

参考文献

(1) Gaucher, G.; Dufresne, M. H.; Sant, V. P.; Kang, N.; Maysinger, D.; Leroux, J. C. Block copolymer micelles: preparation, characterization and application in drug delivery. J. Controlled Release 2005, 109, 169−188.

(2) Nishiyama, N.; Kataoka, K. Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol. Ther. 2006, 112, 630−648.

(3) Blanazs, A.; Armes, S. P.; Ryan, A. J. Self-Assembled Block Copolymer Aggregates: From Micelles to Vesicles and their Biological Applications. Macromol. Rapid Commun. 2009, 30, 267−277.

(4) Cui, H. G.; Webber, M. J.; Stupp, S. I. Self-Assembly of Peptide Amphiphiles: From Molecules to Nanostructures to Biomaterials. Biopolymers 2010, 94, 1−18.

(5) Della Rocca, J.; Liu, D. M.; Lin, W. B. Nanoscale Metal-Organic Frameworks for Biomedical Imaging and Drug Delivery. Acc. Chem. Res. 2011, 44, 957−968.

(6) Yang, Z. M.; Xu, K. M.; Guo, Z. F.; Guo, Z. H.; Xu, B. Intracellular Enzymatic Formation of Nanofibers Results in Hydrogelation and Regulated Cell Death. Adv. Mater. 2007, 19, 3152−3156.

(7) Tanaka, A.; Fukuoka, Y.; Morimoto, Y.; Honjo, T.; Koda, D.; Goto, M.; Maruyama, T. Cancer Cell Death Induced by the Intracellular Self-Assembly of an Enzyme-Responsive Supramolecular Gelator. J. Am. Chem. Soc. 2015, 137, 770−775.

(8) Pires, R. A.; Abul-Haija, Y. M.; Costa, D. S.; Novoa-Carballal, R.; Reis, R. L.; Ulijn, R. V.; Pashkuleva, I. Controlling Cancer Cell Fate Using Localized Biocatalytic Self-Assembly of an Aromatic Carbohydrate Amphiphile. J. Am. Chem. Soc. 2015, 137, 576−579.

(9) Zhan, J.; Cai, Y. B.; He, S. S.; Wang, L.; Yang, Z. M. Tandem Molecular Self-Assembly in Liver Cancer Cells. Angew. Chem., Int. Ed. 2018, 57, 1813−1816.

(10) He, H. J.; Xu, B. Instructed-Assembly (iA): A Molecular Process for Controlling Cell Fate. Bull. Chem. Soc. Jpn. 2018, 91, 900− 906.

(11) Yamamoto, S.; Nishimura, K.; Morita, K.; Kanemitsu, S.; Nishida, Y.; Morimoto, T.; Aoi, T.; Tamura, A.; Maruyama, T. Microenvironment pH-Induced Selective Cell Death for Potential Cancer Therapy Using Nanofibrous Self-Assembly of a Peptide Amphiphile. Biomacromolecules 2021, 22, 2524−2531.

(12) Sherr, C. J. The Pezcoller Lecture: Cancer cell cycles revisited. Cancer Res. 2000, 60, 3689−3695.

(13) Mendelsohn, J.; Baselga, J. The EGF receptor family as targets for cancer therapy. Oncogene 2000, 19, 6550−6565.

(14) Mendelsohn, J.; Baselga, J. Status of epidermal growth factor receptor antagonists in the biology and treatment of cancer. J. Clin. Oncol. 2003, 21, 2787−2799.

(15) Roberts, P. J.; Der, C. J. Targeting the Raf-MEK-ERK mitogenactivated protein kinase cascade for the treatment of cancer. Oncogene 2007, 26, 3291−3310.

(16) Dancey, J. E.; Chen, H. X. Strategies for optimizing combinations of molecularly targeted anticancer agents. Nat. Rev. Drug Discovery 2006, 5, 649−659.

(17) Hoelder, S.; Clarke, P. A.; Workman, P. Discovery of small molecule cancer drugs: Successes, challenges and opportunities. Mol. Oncol. 2012, 6, 155−176.

(18) Holohan, C.; Van Schaeybroeck, S.; Longley, D. B.; Johnston, P. G. Cancer drug resistance: an evolving paradigm. Nat. Rev. Cancer 2013, 13, 714−726.

(19) Roskoski, R. The ErbB/HER family of protein-tyrosine kinases and cancer. Pharmacol. Res. 2014, 79, 34−74.

(20) Janne, P. A.; Yang, J. C. H.; Kim, D. W.; Planchard, D.; Ohe, Y.; Ramalingam, S. S.; Ahn, M. J.; Kim, S. W.; Su, W. C.; Horn, L.; Haggstrom, D.; Felip, E.; Kim, J. H.; Frewer, P.; Cantarini, M.; Brown, K. H.; Dickinson, P. A.; Ghiorghiu, S.; Ranson, M. AZD9291 in EGFR Inhibitor-Resistant Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2015, 372, 1689−1699.

(21) Batenjany, M.; Bartnicki, D.; Ambuel, Y.; Wiepz, G.; Bertics, P.; Hayes, S. Rapid, ELISA-based measurement of protein tyrosine kinase activity using the K-LISATM Kit. Nat. Methods 2005, 2, iv−v.

(22) Ullrich, A.; Coussens, L.; Hayflick, J. S.; Dull, T. J.; Gray, A.; Tam, A. W.; Lee, J.; Yarden, Y.; Libermann, T. A.; Schlessinger, J.; Downward, J.; Mayes, E. L. V.; Whittle, N.; Waterfield, M. D.; Seeburg, P. H. Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature 1984, 309, 418−425.

(23) Roy, S.; Dasgupta, A.; Das, P. K. Alkyl chain length dependent hydrogelation of L-tryptophan-based amphiphile. Langmuir 2007, 23, 11769−11776.

(24) Feng, Z. Q. Q.; Wang, H. M.; Chen, X. Y.; Xu, B. SelfAssembling Ability Determines the Activity of Enzyme-Instructed Self-Assembly for Inhibiting Cancer Cells. J. Am. Chem. Soc. 2017, 139, 15377−15384.

(25) Stamos, J.; Sliwkowski, M. X.; Eigenbrot, C. Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. J. Biol. Chem. 2002, 277, 46265−46272.

(26) Sridhar, S. S.; Seymour, L.; Shepherd, F. A. Inhibitors of epidermal-growth-factor receptors: a review of clinical research with a focus on non-small-cell lung cancer. Lancet Oncol. 2003, 4, 397−406.

(27) Dungo, R. T.; Keating, G. M. Afatinib: First Global Approval. Drugs 2013, 73, 1503−1515.

(28) Gao, Y.; Shi, J.; Yuan, D.; Xu, B. Imaging enzyme-triggered selfassembly of small molecules inside live cells. Nat. Commun. 2012, 3, 1033.

(29) Ishida, M.; Watanabe, H.; Takigawa, K.; Kurishita, Y.; Oki, C.; Nakamura, A.; Hamachi, I.; Tsukiji, S. Synthetic Self-Localizing Ligands That Control the Spatial Location of Proteins in Living Cells. J. Am. Chem. Soc. 2013, 135, 12684−12689.

(30) Golovina, V. A.; Blaustein, M. P. Spatially and functionally distinct Ca2+ stores in sarcoplasmic and endoplasmic reticulum. Science 1997, 275, 1643−1648.

(31) Michalak, M.; Corbett, E. F.; Mesaeli, N.; Nakamura, K.; Opas, M. Calreticulin: one protein, one gene, many functions. Biochem. J. 1999, 344, 281−292.

(32) Walter, P.; Ron, D. The Unfolded Protein Response: From Stress Pathway to Homeostatic Regulation. Science 2011, 334, 1081− 1086.

(33) Tabas, I.; Ron, D. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat. Cell Biol. 2011, 13, 184−190.

(34) Hotamisligil, G. S. Endoplasmic Reticulum Stress and the Inflammatory Basis of Metabolic Disease. Cell 2010, 140, 900−917.

(35) Harding, H. P.; Zhang, Y. H.; Zeng, H. Q.; Novoa, I.; Lu, P. D.; Calfon, M.; Sadri, N.; Yun, C.; Popko, B.; Paules, R.; Stojdl, D. F.; Bell, J. C.; Hettmann, T.; Leiden, J. M.; Ron, D. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol. Cell 2003, 11, 619−633.

(36) Feng, Z. Q. Q.; Wang, H. M.; Wang, S. Y.; Zhang, Q.; Zhang, X. X.; Rodal, A. A.; Xu, B. Enzymatic Assemblies Disrupt the Membrane and Target Endoplasmic Reticulum for Selective Cancer Cell Death. J. Am. Chem. Soc. 2018, 140, 9566−9573.

(37) Clavadetscher, J.; Hoffmann, S.; Lilienkampf, A.; Mackay, L.; Yusop, R. M.; Rider, S. A.; Mullins, J. J.; Bradley, M. Copper Catalysis in Living Systems and In Situ Drug Synthesis. Angew. Chem., Int. Ed. 2016, 55, 15662−15666.

(38) Clavadetscher, J.; Indrigo, E.; Chankeshwara, S. V.; Lilienkampf, A.; Bradley, M. In-Cell Dual Drug Synthesis by Cancer-Targeting Palladium Catalysts. Angew. Chem., Int. Ed. 2017, 56, 6864−6868.

(39) Eda, S.; Nasibullin, I.; Vong, K.; Kudo, N.; Yoshida, M.; Kurbangalieva, A.; Tanaka, K. Biocompatibility and therapeutic potential of glycosylated albumin artificial metalloenzymes. Nat. Catal. 2019, 2, 780−792.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る