リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Environmental DNA phylogeography: Successful reconstruction of phylogeographic patterns of multiple fish species from cups of water」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Environmental DNA phylogeography: Successful reconstruction of phylogeographic patterns of multiple fish species from cups of water

Tsuji, Satsuki Shibata, Naoki Inui, Ryutei Nakao, Ryohei Akamatsu, Yoshihisa Watanabe, Katsutoshi 京都大学 DOI:10.1111/1755-0998.13772

2023.07

概要

Phylogeography is an integrative field of science linking micro- and macro-evolutionary processes, contributing to the inference of vicariance, dispersal, speciation, and other population-level processes. Phylogeographic surveys usually require considerable effort and time to obtain numerous samples from many geographical sites covering the distribution range of target species; this associated high cost limits their application. Recently, environmental DNA (eDNA) analysis has been useful not only for detecting species but also for assessing genetic diversity; hence, there has been growing interest in its application to phylogeography. As the first step of eDNA-based phylogeography, we examined (1) data screening procedures suitable for phylogeography and (2) whether the results obtained from eDNA analysis accurately reflect known phylogeographic patterns. For these purposes, we performed quantitative eDNA metabarcoding using group-specific primer sets in five freshwater fish species belonging to two taxonomic groups from a total of 94 water samples collected from western Japan. As a result, three-step data screening based on the DNA copy number of each haplotype detected successfully eliminated suspected false positive haplotypes. Furthermore, eDNA analysis could almost perfectly reconstruct the phylogenetic and phylogeographic patterns obtained for all target species with the conventional method. Despite existing limitations and future challenges, eDNA-based phylogeography can significantly reduce survey time and effort and is applicable for simultaneous analysis of multiple species in single water samples. eDNA-based phylogeography has the potential to revolutionize phylogeography.

この論文で使われている画像

参考文献

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

Andres, K.J., Sethi, S.A., Lodge, D.M., Andrés, J. (2021) Nuclear eDNA estimates population

allele frequencies and abundance in experimental mesocosms and field samples.

Molecular Ecology 30, 685–697. https://doi.org/10.1111/mec.15765

Aoyama, J., Watanabe, S., Ishikawa, S., Nishida, M., Tsukamoto, K (2000) Are morphological

characters distinctive enough to discriminate between two species of freshwater

eels,anguilla celebesensis andA. interioris? Ichthyological Research 47, 157–161.

https://doi.org/10.1007/BF02684236

Avise, J.C. (2000) Phylogeography: The History and Formation of Species. Harvard University

Press, Cambridge.

Avise, J.C., Arnold, J., Ball, R.M., Bermingham, E., Lamb, T., Neigel, J.E., Reeb, C.A., Saunders,

N.C. (1987) Intraspecific phylogeography: the mitochondrial DNA bridge between

population genetics and systematics. Annual review of ecology and systematics 18, 489–

522.

Baker, C.S., Steel, D., Nieukirk, S., Klinck, H. (2018) Environmental DNA (eDNA) from the

wake of the whales: droplet digital PCR for detection and species identification. Frontiers

in Marine Science 5.

Ballard, J.W.O., Whitlock, M.C. (2004) The incomplete natural history of mitochondria.

Molecular Ecology 13, 729–744. https://doi.org/10.1046/j.1365-294X.2003.02063.x

Bates, D., Maechler, M., Bolker, B., Walker, S., Christensen, R.H.B., Singmann, H., Dai, B.,

Scheipl, F., Grothendieck, G., Green, P., Fox, J., Bauer, A., Krivitsky, P.N. (2022) Linear

Mixed-Effects Models using “Eigen” and S4. – R package ver.1.1-29.

Becker, R.A., Wilks, A.R., Brownrigg, R., Minka, T.P., Deckmyn, A. (2021) maps: Draw

geographical maps. ver. 3.4.0.

Bermingham, E., Moritz, C. (1998) Comparative phylogeography: concepts and applications.

Molecular Ecology 7, 367–369. https://doi.org/10.1046/j.1365-294x.1998.00424.x

Brownrigg, R., 2018. Extra Map Databases. Version 2.3.0 [R package].

29

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

Bylemans, J., Furlan, E.M., Hardy, C.M., McGuffie, P., Lintermans, M., Gleeson, D.M. (2017)

An environmental DNA-based method for monitoring spawning activity: A case study,

using the endangered Macquarie perch (Macquaria australasica). Methods in Ecology

and Evolution 8, 646–655.

Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A., Holmes, S.P. (2016)

DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods

13, 581–583. https://doi.org/10.1038/nmeth.3869

Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., Madden, T.L.

(2009) BLAST+: architecture and applications. BMC Bioinformatics 10, 421.

https://doi.org/10.1186/1471-2105-10-421

Corush, J.B., Pierson, T.W., Shiao, J.-C., Katayama, Y., Zhang, J., Fitzpatrick, B.M. (2022)

Amphibious mudskipper populations are genetically connected along coastlines, but

differentiated across water. Journal of Biogeography 49, 767–779.

https://doi.org/10.1111/jbi.14345

Cucherousset, J., Olden, J.D. (2011) Ecological impacts of nonnative freshwater fishes. Fisheries

36, 215–230. https://doi.org/10.1080/03632415.2011.574578

Deiner, K., Renshaw, M.A., Li, Y., Olds, B.P., Lodge, D.M., Pfrender, M.E. (2017) Long-range

PCR allows sequencing of mitochondrial genomes from environmental DNA. Methods in

Ecology and Evolution 8, 1888–1898. https://doi.org/10.1111/2041-210X.12836

Dugal, L., Thomas, L., Jensen, M.R., Sigsgaard, E.E., Simpson, T., Jarman, S., Thomsen, P.F.,

Meekan, M. (2022) Individual haplotyping of whale sharks from seawater environmental

DNA. Molecular Ecology Resources 22, 56–65. https://doi.org/10.1111/1755-0998.13451

Edgar, R.C. (2016) UNOISE2: improved error-correction for Illumina 16S and ITS amplicon

sequencing. bioRxiv. https://doi.org/10.1101/081257

Gerritsen, H. (2018) Data Visualisation on Maps. ver. 1.5.1.

Gozlan, R.E., Britton, J.R., Cowx, I., Copp, G.H. (2010) Current knowledge on non-native

freshwater fish introductions. Journal of Fish Biology 76, 751–786.

https://doi.org/10.1111/j.1095-8649.2010.02566.x

Hamady, M., Walker, J.J., Harris, J.K., Gold, N.J., Knight, R. (2008) Error-correcting barcoded

primers for pyrosequencing hundreds of samples in multiplex. Nat Methods 5, 235–237.

https://doi.org/10.1038/nmeth.1184

Holman, L.E., Parker-Nance, S., de Bruyn, M., Creer, S., Carvalho, G., Rius, M. (2022)

Managing human-mediated range shifts: understanding spatial, temporal and genetic

variation in marine non-native species. Philosophical Transactions of the Royal Society B:

Biological Sciences 377, 20210025. https://doi.org/10.1098/rstb.2021.0025

Hosoya, K. (2019) Sankei Handy Illustrated Book 15: Freshwater fish of Japan, enlarged and

revised edition. ed. Yama-kei Publishers co.,Ltd.

Iwata, A., Sakai, H. (2002) Odontobutis hikimius: A new freshwater goby from Japan, with a key

to species of the Genus. cope 2002, 104–110. https://doi.org/10.1643/00458511(2002)002[0104:OHNSAN]2.0.CO;2

Jensen, M.R., Sigsgaard, E.E., Liu, S., Manica, A., Bach, S.S., Hansen, M.M., Møller, P.R.,

Thomsen, P.F. (2021) Genome-scale target capture of mitochondrial and nuclear

30

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

environmental DNA from water samples. Molecular Ecology Resources 21, 690–702.

https://doi.org/10.1111/1755-0998.13293

Jo, T., Murakami, H., Masuda, R., Sakata, M.K., Yamamoto, S., Minamoto, T. (2017) Rapid

degradation of longer DNA fragments enables the improved estimation of distribution and

biomass using environmental DNA. Molecular Ecology Resources 17, e25–e33.

https://doi.org/10.1111/1755-0998.12685

Jukes, T.H., Cantor, C.R. (1969) Evolution of Protein Molecules. In: Munro, H.N., Ed.,

Mammalian Protein Metabolism. Academic Press, New York.

Kakehashi, R., Ito, S., Yasui, K., Kambayashi, Ch., Kanao, Sh., Kurabayashi, A. (2022)

Amplification and sequencing of the complete mtDNA of the endangered bitterling,

Acheilognathus longipinnis (Cyprinidae), using environmental DNA from aquarium

water. J. Ichthyol. 62, 280–288. https://doi.org/10.1134/S0032945222020072

Kitanishi, S., Hayakawa, A., Takamura, K., Nakajima, J., Kawaguchi, Y., Onikura, N., Mukai, T.

(2016) Phylogeography of Opsariichthys platypus in Japan based on mitochondrial DNA

sequences. Ichthyol Res 63, 506–518. https://doi.org/10.1007/s10228-016-0522-y

Marshall, N.T., Stepien, C.A. (2019) Invasion genetics from eDNA and thousands of larvae: A

targeted metabarcoding assay that distinguishes species and population variation of zebra

and quagga mussels. Ecology and Evolution 9, 3515–3538.

https://doi.org/10.1002/ece3.4985

Miya, M., Sato, Y., Fukunaga, T., Sado, T., Poulsen, J.Y., Sato, K., Minamoto, T., Yamamoto, S.,

Yamanaka, H., Araki, H. (2015) MiFish, a set of universal PCR primers for

metabarcoding environmental DNA from fishes: detection of more than 230 subtropical

marine species. Royal Society open science 2, 150088.

Miyake, T., Nakajima, J., Onikura, N., Ikemoto, S., Iguchi, K., Komaru, A., Kawamura, K.

(2011) The genetic status of two subspecies of Rhodeus atremius, an endangered bitterling

in Japan. Conserv Genet 12, 383–400. https://doi.org/10.1007/s10592-010-0146-0

Miyake, T., Nakajima, J., Umemura, K., Onikura, N., Ueda, T., Smith, C., Kawamura, K. (2021)

Genetic diversification of the Kanehira bitterling Acheilognathus rhombeus inferred from

mitochondrial DNA, with comments on the phylogenetic relationship with its sister

species Acheilognathus barbatulus. Journal of Fish Biology 99, 1677–1695.

https://doi.org/10.1111/jfb.14876

Miyazaki, J.-I., Dobashi, M., Tamura, T., Beppu, S., Sakai, T., Mihara, M., Hosoya, K. (2011)

Parallel evolution in eight-barbel loaches of the genus Lefua (Balitoridae, Cypriniformes)

revealed by mitochondrial and nuclear DNA phylogenies. Molecular Phylogenetics and

Evolution 60, 416–427. https://doi.org/10.1016/j.ympev.2011.05.005

Mizuguchi, K. (1990) Dispersal of the oikawa, Zacco platypus (temminck et schlegel), in Japan.

Rep Tokyo Univ Fish 25, 149–169.

Moritz, C. (2002) Strategies to protect biological diversity and the evolutionary processes that

sustain it. Systematic Biology 51, 238–254. https://doi.org/10.1080/10635150252899752

Mukai, T., Nishida, M. (2003) Mitochondrial DNA phylogeny of Japanese freshwater goby,

Odontobutis obscura, and an evidence for artificial transplantation to Kanto District.

Japan. J. Ichthyol. 50, 71–76.

31

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

Mukai, T., Onikura, N., Yodo, T., Senou, H. (2013) Domestic alien fishes: Hidden threats to

biodiversity, Edited by Nature Conservation Committee of Ichtyological Society of Japan.

ed. Tokai University Press.

Nakagawa, H., Seki, S., Ishikawa, T., Watanabe, K. (2016) Genetic population structure of the

Japanese torrent catfish Liobagrus reinii (Amblycipitidae) inferred from mitochondrial

cytochrome b variations. Ichthyol Res 63, 333–346. https://doi.org/10.1007/s10228-0150503-6

Nguyen, T.V., Tilker, A., Nguyen, A., Hörig, L., Axtner, J., Schmidt, A., Le, M., Nguyen, A.H.Q.,

Rawson, B.M., Wilting, A., Fickel, J. (2021) Using terrestrial leeches to assess the genetic

diversity of an elusive species: The Annamite striped rabbit Nesolagus timminsi.

Environmental DNA 3, 780–791. https://doi.org/10.1002/edn3.182

Palumbi, S., Martin, A., Romano, S., McMillian, W., Stice, L., Grabowski, G. (1991) The simple

fool’s guide to PCR. Univ Hawaii, Honolulu.

Parsons, K.M., Everett, M., Dahlheim, M., Park, L. (2018) Water, water everywhere:

environmental DNA can unlock population structure in elusive marine species. Royal

Society Open Science 5, 180537. https://doi.org/10.1098/rsos.180537

R Core Team. R, 2021. A Language and Environment for Statistical Computing.

Rees, H.C., Maddison, B.C., Middleditch, D.J., Patmore, J.R.M., Gough, K.C. (2014) The

detection of aquatic animal species using environmental DNA – a review of eDNA as a

survey tool in ecology. Journal of Applied Ecology 51, 1450–1459.

https://doi.org/10.1111/1365-2664.12306

Ruzzante, D.E., Walde, S.J., Gosse, J.C., Cussac, V.E., Habit, E., Zemlak, T.S., Adams, E.D.M.

(2008) Climate control on ancestral population dynamics: insight from Patagonian fish

phylogeography. Molecular Ecology 17, 2234–2244. https://doi.org/10.1111/j.1365294X.2008.03738.x

Saitou, N., Nei, M. (1987). The neighbor-joining method: a new method for reconstructing

phylogenetic trees. Molecular Biology and Evolution 4, 406–425.

https://doi.org/10.1093/oxfordjournals.molbev.a040454

Sakai, H., Yamamoto, C., Iwata, A. (1998) Genetic divergence, variation and zoogeography of a

freshwater goby,Odontobutis obscura. Ichthyol Res 45, 363–376.

https://doi.org/10.1007/BF02725189

Scoble, J., Lowe, A.J. (2010) A case for incorporating phylogeography and landscape genetics

into species distribution modelling approaches to improve climate adaptation and

conservation planning. Diversity and Distributions 16, 343–353.

https://doi.org/10.1111/j.1472-4642.2010.00658.x

Sersics, A.N., Cosacov, A., Cocucci, A.C., Johnson, L.A., Pozner, R., Avila, L.J., Sites, J.W., Jr.,

Morando, M. (2011) Emerging phylogeographical patterns of plants and terrestrial

vertebrates from Patagonia. Biological Journal of the Linnean Society 103, 475–494.

https://doi.org/10.1111/j.1095-8312.2011.01656.x

Shum, P., Palumbi, S.R. (2021) Testing small-scale ecological gradients and intraspecific

differentiation for hundreds of kelp forest species using haplotypes from metabarcoding.

Molecular Ecology 30, 3355–3373. https://doi.org/10.1111/mec.15851

32

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

Sigsgaard, E.E., Jensen, M.R., Winkelmann, I.E., Møller, P.R., Hansen, M.M., Thomsen, P.F.

(2020) Population‐level inferences from environmental DNA—Current status and future

perspectives. Evol Appl 13, 245–262. https://doi.org/10.1111/eva.12882

Sigsgaard, E.E., Nielsen, I.B., Bach, S.S., Lorenzen, E.D., Robinson, D.P., Knudsen, S.W.,

Pedersen, M.W., Jaidah, M.A., Orlando, L., Willerslev, E., Møller, P.R., Thomsen, P.F.

(2016) Population characteristics of a large whale shark aggregation inferred from

seawater environmental DNA. Nat Ecol Evol 1, 1–5. https://doi.org/10.1038/s41559-0160004

Soltis, D.E., Morris, A.B., McLACHLAN, J.S., Manos, P.S., Soltis, P.S. (2006) Comparative

phylogeography of unglaciated eastern North America. Molecular Ecology 15, 4261–

4293. https://doi.org/10.1111/j.1365-294X.2006.03061.x

Stat, M., Huggett, M.J., Bernasconi, R., DiBattista, J.D., Berry, T.E., Newman, S.J., Harvey, E.S.,

Bunce, M. (2017) Ecosystem biomonitoring with eDNA: metabarcoding across the tree of

life in a tropical marine environment. Sci Rep 7, 12240. https://doi.org/10.1038/s41598017-12501-5

Székely, D., Corfixen, N.L., Mørch, L.L., Knudsen, S.W., McCarthy, M.L., Teilmann, J., HeideJørgensen, M.P., Olsen, M.T. (2021) Environmental DNA captures the genetic diversity of

bowhead whales (Balaena mysticetus) in West Greenland. Environmental DNA 3, 248–

260. https://doi.org/10.1002/edn3.176

Taberlet, P., Coissac, E., Hajibabaei, M., Rieseberg, L.H. (2012) Environmental DNA. Molecular

Ecology 21, 1789–1793. https://doi.org/10.1111/j.1365-294X.2012.05542.x

Takamura, K., Nakahara, M. (2015) Intraspecific invasion occurring in geographically isolated

populations of the Japanese cyprinid fish Zacco platypus. Limnology 16, 161–170.

https://doi.org/10.1007/s10201-015-0450-y

Takehana, Y., Nagai, N., Matsuda, M., Tsuchiya, K., Sakaizumi, M. (2003) Geographic variation

and diversity of the Cytochrome b gene in Japanese wild populations of Medaka, Oryzias

latipes. jzoo 20, 1279–1291. https://doi.org/10.2108/zsj.20.1279

Taniguchi, S., Bertl, J., Futschik, A., Kishino, H., Okazaki, T. (2021) Waves out of the Korean

Peninsula and inter- and intra-species replacements in freshwater fishes in Japan. Genes

12, 303. https://doi.org/10.3390/genes12020303

Teske, P.R., Golla, T.R., Sandoval-Castillo, J., Emami-Khoyi, A., van der Lingen, C.D., von der

Heyden, S., Chiazzari, B., Jansen van Vuuren, B., Beheregaray, L.B. (2018)

Mitochondrial DNA is unsuitable to test for isolation by distance. Sci Rep 8, 8448.

https://doi.org/10.1038/s41598-018-25138-9

Thomsen, P.F., Willerslev, E. (2015) Environmental DNA–An emerging tool in conservation for

monitoring past and present biodiversity. Biological conservation 183, 4–18.

Tominaga, K., Nagata, N., Kitamura, J., Watanabe, K., Sota, T. (2020) Phylogeography of the

bitterling Tanakia lanceolata (Teleostei: Cyprinidae) in Japan inferred from mitochondrial

cytochrome b gene sequences. Ichthyol Res 67, 105–116. https://doi.org/10.1007/s10228019-00715-8

Tominaga, K., Nakajima, J., Watanabe, K. (2016) Cryptic divergence and phylogeography of the

pike gudgeon Pseudogobio esocinus (Teleostei: Cyprinidae): a comprehensive case of

33

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

freshwater phylogeography in Japan. Ichthyol Res 63, 79–93.

https://doi.org/10.1007/s10228-015-0478-3

Tsuji, S., Inui, R., Nakao, R., Miyazono, S., Saito, M., Kono, T., Akamatsu, Y. (2022a)

Quantitative environmental DNA metabarcoding reflects quantitative capture data of fish

community obtained by electrical shocker. Sci Rep 12, 21524. https://doi.org/

10.1038/s41598-022-25274-3

Tsuji, S., Maruyama, A., Miya, M., Ushio, M., Sato, H., Minamoto, T., Yamanaka, H. (2020a)

Environmental DNA analysis shows high potential as a tool for estimating intraspecific

genetic diversity in a wild fish population. Molecular Ecology Resources 20, 1248–1258.

Tsuji, S., Miya, M., Ushio, M., Sato, H., Minamoto, T., Yamanaka, H. (2020b) Evaluating

intraspecific genetic diversity using environmental DNA and denoising approach: A case

study using tank water. Environmental DNA 2, 42–52. https://doi.org/10.1002/edn3.44

Tsuji, S., Murakami, H., Masuda, R. (2022b) Analysis of the persistence and particle size

distributional shift of sperm-derived environmental DNA to monitor Jack Mackerel

spawning activity. https://doi.org/10.1101/2022.03.09.483695

Tsuji, S., Shibata, N. (2021) Identifying spawning events in fish by observing a spike in

environmental DNA concentration after spawning. Environmental DNA 3, 190–199.

Tsuji, S., Shibata, N., Sawada, H., Ushio, M. (2020c) Quantitative evaluation of intraspecific

genetic diversity in a natural fish population using environmental DNA analysis.

Molecular Ecology Resources 20, 1323–1332.

Turon, X., Antich, A., Palacín, C., Præbel, K., Wangensteen, O.S. (2020) From metabarcoding to

metaphylogeography: separating the wheat from the chaff. Ecological Applications 30,

e02036. https://doi.org/10.1002/eap.2036

Ushio, M., Murakami, H., Masuda, R., Sado, T., Miya, M., Sakurai, S., Yamanaka, H., Minamoto,

T., Kondoh, M. (2018) Quantitative monitoring of multispecies fish environmental DNA

using high-throughput sequencing. Metabarcoding and Metagenomics 2, e23297.

https://doi.org/10.3897/mbmg.2.23297

Watanabe, K., Mori, S., Tanaka, T., Kanagawa, N., Itai, T., Kitamura, J., Suzuki, N., Tominaga,

K., Kakioka, R., Tabata, R., Abe, T., Tashiro, Y., Hashimoto, Y., Nakajima, J., Onikura, N.

(2014) Genetic population structure of Hemigrammocypris rasborella (Cyprinidae)

inferred from mtDNA sequences. Ichthyol Res 61, 352–360.

https://doi.org/10.1007/s10228-014-0406-y

Watanabe, K., Takahashi, H., Kitamura, A., Yokoyama, R., Kitagawa, T., Takeshima, H., Sato, S.,

Yamamoto, S., Yusuke, T., Mikai, T., Ohara, K., Iguchi, K. (2006) Biogeographical

history of Japanese freshwater fishes: Phylogeographic approaches and perspectives.

Japanese journal of Ichthyology 53, 1–38. https://doi.org/10.11369/jji1950.53.1

Weitemier, K., Penaluna, B.E., Hauck, L.L., Longway, L.J., Garcia, T., Cronn, R. (2021)

Estimating the genetic diversity of Pacific salmon and trout using multigene eDNA

metabarcoding. Molecular Ecology 30, 4970–4990. https://doi.org/10.1111/mec.15811

Yamamoto, S., Masuda, R., Sato, Y., Sado, T., Araki, H., Kondoh, M., Minamoto, T., Miya, M.

(2017) Environmental DNA metabarcoding reveals local fish communities in a speciesrich coastal sea. Sci Rep 7, 40368. https://doi.org/10.1038/srep40368

34

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

Yamanaka, H., Minamoto, T., Matsuura, J., Sakurai, S., Tsuji, S., Motozawa, H., Hongo, M.,

Sogo, Y., Kakimi, N., Teramura, I., Sugita, M., Baba, M., Kondo, A. (2017) A simple

method for preserving environmental DNA in water samples at ambient temperature by

addition of cationic surfactant. Limnology 18, 233–241. https://doi.org/10.1007/s10201016-0508-5

Yoshitake, K., Yoshinaga, T., Tanaka, C., Mizusawa, N., Reza, Md.S., Tsujimoto, A., Kobayashi,

T., Watabe, S. (2019) HaCeD-Seq: a Novel Method for Reliable and Easy Estimation

About the Fish Population Using Haplotype Count from eDNA. Mar Biotechnol 21, 813–

820. https://doi.org/10.1007/s10126-019-09926-6

Zizka, V.M.A., Koschorreck, J., Khan, C.C., Astrin, J.J. (2022) Long-term archival of

environmental samples empowers biodiversity monitoring and ecological research.

Environmental Sciences Europe 34, 40. https://doi.org/10.1186/s12302-022-00618-y

35

879

Table

880

881

882

883

884

885

886

887

Table 1 Summary of the number of haplotypes obtained in each step of the data screening process

and those exactly matching any of the reference sequences (≥96% identity percentage).

Data screening step: 0, non-data screening; 1 , <1 copy/L replaced with 0 copy/L; 2, <1%

in frequency at each site replaced with 0%; 3_1/2, the haplotypes detected at less than half

of the proportion of the most predominant haplotype replaced by 0%; 3_1/3, the

haplotypes detected at less than half of the proportion of the most predominant haplotype

replaced by 0% (see Fig. S3)

Target species

Data

Total detected

Decrease rate

screening

no. of

from step 0

step

Odontobutis obscura

and O.hikimius

No. of reference haplotypes: 5

haplotypes

Number of

haplotypes

100% matching

(%)

with refereces

100%

Recovery rate

Matching rate

of refences

(%)

(%)

Figure of

results

step 0

102

0.0

2.9

60.0

Fig. S5a

step 1

92

9.8

3.3

60.0

Fig. S5b

step 2

54

47.1

5.6

60.0

Fig. S5c

step 3_1/2

19

81.4

15.8

60.0

Fig. 2

step 3_1/3

20

80.4

15.0

60.0

Fig. S5d

Nipponocypris temminckii

step 0

269

0.0

1.1

100.0

Fig. S6a

No. of reference haplotypes: 3

step 1

163

39.4

1.8

100.0

Fig. S6b

step 2

89

66.9

3.4

100.0

Fig. S6c

step 3_1/2

18

93.3

16.7

100.0

Fig. 3

step 3_1/3

18

93.3

16.7

100.0

Fig. S6d

Zacco platypus

step 0

747

0.0

17

2.3

51.5

Fig. S7a

No. of reference haplotypes: 33

step 1

517

30.8

17

3.3

51.5

Fig. S7b

step 2

148

80.2

15

10.1

45.5

Fig. S7c

step 3_1/2

39

94.8

12

30.8

36.4

Fig. 4

step 3_1/3

46

93.8

12

26.1

36.4

Fig. S7d

888

889

890

891

892

893

894

895

36

896

Figuire legends

897

898

899

900

901

902

903

904

Fig.1 (a) Approximately distribution ranges of each target species in Japan and (b) eDNA

sampling locations. Pink circles and blue diamonds indicates samples collected between

2017-2020 and stored in the laboratory and newly collected sample in 2021, respectively.

Photo copyright: O. obscura and O. hikimius for Mr. S. Kunumatsu ; N. temminckii, N.

sieboldii and Z. platypus for ffish.asia (https://ffish.asia, 2022.06.01 downloaded).

905

906

37

907

908

909

910

911

912

913

914

915

916

917

918

919

Fig. 2 Odontobutis obscura and O. hikimius; (a) NJ tree and distribution map based on partial

12S sequence (366 bp) obtained by eDNA analysis and (b) NJ tree based on the deposited

partial 12S sequence (690 bp) in NCBI by Mukai and Nishida (2003) and distribution

map of each group revealed using allozyme analysis by Sakai et al. (1988). Numbers at

internodes of both NJ trees represent bootstrap probability values (≥40 %) for 1,000

replicates. The colours of each group are common in both panels, NJ trees and

distribution maps. IDs in NJ trees: ‘Dhap No.’, haplotype detected by eDNA analysis;

‘FKC No.+ LC7199xx’, ID and accession No. of individuals captured and sequenced in

st. 88 and 89 (Fukuchi River); ‘AB0955xx.’, accession No. of deposited sequence in

NCBI by Mukai and Nishida (2003). Pie chart shows the ratio of detected haplotypes of

each group and the relative total number of haplotypes detected (Table S7a).

38

920

921

922

923

924

925

926

927

928

929

930

931

932

Fig. 3 Nipponocypris temminckii; (a) NJ tree and distribution map based on partial D-loop

sequence (270 bp) obtained by eDNA analysis and (b) ML and Bayesian tree and

distribution map based on partial ND2 sequence (600 bp) provided by Taniguchi et al.

(2020). Numbers at internodes of NJ tree represent bootstrap probability values (≥30 %)

for 1,000 replicates. The colours of each group are common in the panels, trees and

distribution maps. IDs in NJ trees: ‘Thap No.’, haplotype detected by eDNA analysis. Pie

chart shows the ratio of detected haplotypes of each group and the relative total number of

haplotypes detected (Table S7b).

39

933

934

935

936

937

938

939

940

941

942

943

Fig. 4 Nipponocypris sieboldii; NJ tree and distribution map (a) based on partial D-loop sequence

(270 bp) obtained by eDNA analysis and (b) based on partial cytb sequence (715 bp)

obtained by Sanger sequence. Numbers at internodes of both NJ trees represent bootstrap

probability values (≥30 %) for 1,000 replicates. The colours of each group are common in

the panels, NJ trees and distribution maps. IDs in NJ trees: ‘Shap No.’, haplotype detected

by eDNA analysis; ‘LC7185xx’, NCBI accession No. Pie chart shows the ratio of detected

haplotypes of each group and the relative total number of haplotypes detected (Table

S7c).

944

945

946

40

947

948

949

950

951

952

953

954

955

Fig. 5 Zacco platypus; NJ tree and distribution map (a) based on partial D-loop sequence (270 bp)

obtained by eDNA analysis and (b) based on partial cytb sequence (1,004 bp) provided by

Kitanishi et al. (2016). Numbers at internodes of NJ tree in (a) represent bootstrap

probability values (≥30 %) for 1,000 replicates. The colours of each group are common in

the panels, NJ trees and distribution maps. IDs in NJ trees: ‘Zhap No.’, haplotype detected

by eDNA analysis. Pie chart shows the ratio of detected haplotypes of each group and the

relative total number of haplotypes detected (Table S7d).

41

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る