リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「In situ investigation on the evolution of crystal/melt interface during directional solidification of Si」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

In situ investigation on the evolution of crystal/melt interface during directional solidification of Si

HU Kuan-Kan 東北大学

2020.09.25

概要

Multicrystalline silicon (mc-Si) grown by directional solidification is widely used in photovoltaic applications because it is very cost-effective. The photovoltaic properties of mc-Si are strongly dependent on its grain size, crystallographic orientation, and the presence of defects. In recent years, many techniques e.g. mono-like silicon, dendritic casting growth and high performance mc-Si techniques had been developed to get a mc-Si ingot with low defect density. However, there still exist large and internal challenges related to: the control of nucleation, twinning occurrence, grain competition, defect generation and their evolution during growth. As a consequence, further understanding of the crystal growth mechanism from melt is needed to increase the competitiveness of those processes and to reach an efficient mass production.

In this study, we experimentally study the directional growth of pure silicon from its melt using in situ observation system and particularly, on the evolution of crystal/melt interface to investigate multicrystalline silicon growth mechanism. Furthermore, the grain structure information e.g. the grain orientations and grain boundaries types was performed through electron backscattering diffraction (EBSD). The in situ observation data and the character of solidified crystal give complementary information on the grain structure and defects occurring during the process. We focus on the growing crystal/melt interface, grain boundary development and twinning occurrence, aiming at deepening the fundamental understanding on the phenomena that occur during the silicon crystal growth.

この論文で使われている画像

参考文献

[1] Kutscher, C.F.; Milford, J.B.; Kreith, F. (2018). Principles of Sustainable Energy Systems, Third Edition

[2] Brooks, A. E. (2014). Solar Energy. Future Energy, 383–404.

[3] IEA (2019), "World Energy Outlook 2019", IEA, Paris, https://www.iea.org/reports/world-energy-outlook-2019

[4] KAHRAMAA and Siraj Energy Sign Agreements for Al-Kharsaah Solar PV Power Plant". Qatar General Electricity & Water Corporation “KAHRAMAA”. Retrieved 26 January 2020.

[5] PV education.org, “absorption coefficient”, https://www.pveducation.org/pvcdrom/pn-junctions/absorption-coefficient

[6] The National Renewable Energy Laboratory, “Best Research-Cell Efficiency Chart”, NREL, https://www.nrel.gov/pv/cell-efficiency.html

[7] Fraunhofer ISE, Photovoltaics Report, Global market-share in terms of annual production by PV technology since 1990, 2014

[8] R. M. Swanson, “Approaching the 29% limit efficiency of silicon solar cells”, Thirty-First IEEE Photovoltaic Specialists Conference. 01/2005, Lake buena Vista, FL, USA, pp. 889-94, 2005.

[9] H. C. Card and Yang, E. S., IEEE Transactions on Electron Devices, vol. ED-24, pp. 397-402, 1977.

[10] Y. M. Yang, Yu, A., Hsu, B., Hsu, W. C., Yang, A., and Lan, C. W., Progress in Photovoltaics: Research and Applications, vol. 23, no. 3, pp. 340 - 351, 2015.

[11] L.F. Mattheiss, J.R. Patel, Phys. Rev. B 23 (1981) 5384.

[12] O.N. Koroleva, A.V. Mazhukin and V.I. Mazhukin, Math. Montis. 41, 73-90 (2018).

[13] P.A. Apte, X.C. Zeng, Appl. Phys. Lett. 92 (2008) 221903

[14] W. Kossel, Naturwissenschaften 18 (1930) 901.

[15] I.V. Markov, Crystal Growth for Beginners, World Scientific, Singapore, 1995, pp. 1-62 (Chapter 1).

[16] K. Fujiwara, Y. Obinata, T. Ujihara, N. Usami, G. Sazaki, K. Nakajima, J. Cryst. Growth 266 (2004) 441.

[17] M. Kohyama, R. Yamamoto, M. Doyama, Phys. Status Solidi B 138 (1986) 387.

[18] M.D. Kluge, J.R. Ray, Phys. Rev. B 39 (1989) 1738.

[19] D. Buta, M. Asta, J.J. Hoyt, J. Chem. Phys. 127 (2007) 074703.

[20] W. Obretenov, D. Kashchiev, V. Bostanov, J. Cryst. Growth 96 (1989) 843.

[21] K.M. Beatty, K.A. Jackson, J. Cryst. Growth 211 (2000) 13.

[22] Chernov A A, Sov. Phys. Usp. 4 116–148 (1961)

[23] F. C. Frank, Discuss. Faraday Soc. 5 (1949) 48-54

[24] W.W. Mullins, R.F. Sekerka, J. Appl. Phys. 35 (1964) 444.

[25] W.W. Mullins, R.F. Sekerka, J. Appl. Phys. 34 (1963) 323.

[26] Jackson KA. Liquid metal and solidification. Cleveland, OH: American Society for Metals, 1958. p. 174.

[27] Jackson KA. Mater Sci Eng 65 (1984) 7.

[28] F.H. Stillinger, T.A. Weber, Phys. Rev. B 33 (1986) 1451.

[29] S Bergmann, K Albe, E Flegel, D A Barragan-Yani, B Wagner, Modelling Simul. Mater. Sci. Eng. 25 (2017) 065015 (20pp)

[30] V. Randle, Acta Mater. 52 (2004) 4067.

[31] D.G. Brandon, Acta Metall. 14 (1966) 1479.

[32] K. Adamczyk, R. Søndena, C. C. You, G. Stokkan, J. Lindroos, M. Rinio, M. Di Sabatino, Phys. Status Solidi A 215, 1700493 (2018).

[33] K. Kutsukake, Growth of cryatalline silicon for solar cells: mono-like method, in: D. Yang (Ed.), Chapter 11, Section Two, Crystalline Silicon Growth, Hand Book of “Photovoltaic Silicon Material”, Springer, Berlin Heidelberg, 2018, pp. 1-20

[34] J. Chen, B. Chen, T. Sekiguchi, M. Fukuzawa, M. Yamada, Appl. Phys. Lett. 93 (2008) 112105.

[35] P.H. Pumphrey, K.M. Bowkett, Scr. Metall. 5 (1971) 365–369.

[36] M. Kohyama, R. Yamamoto, M. Doyama, Phys. Status Solidi 138 (1986) 387.

[37] T. Duffar, A. Nadri, C. R. Physique 14 (2013) 185–191.

[38] K. Maeda, A. Niitsu, H. Morito, K. Shiga, K. Fujiwara, Scr. Mater. 146 (2018) 169–172

[39] A. Tandjaoui, N. Mangelinck-Noel, G. Reinhart, B. Billia, T. Lafford, J. Baruchel, J. Cryst. Growth 377 (2013) 203-211.

[40] K. Fujiwara, M. Ishii, K. Maeda, H. Koizumi, J. Nozawa, S. Uda, Scr. Mater. 69 (2013) 266-269

[41] T. Börzönyi, S. Akamatsu, Phys. Rev. E 66 (2002) 051709.

[42] T. Duffar, A. Nadri, Scr. Mater. 62 (2010) 955–960

[43] A.N. Buzynin, V.A. Antonov, V.V. Osiko, M. Tatarintsev, Izv. Akad. Nauk SSSR Ser. Fiz. 52 (1988) 1889–1895 (English Trans. pp. 16–21).

[44] H.K. Lin, C.W. Lan, Acta Mater. 131 (2017) 1–10.

[45] M.G. Tsoutsouva, T. Riberi-Béridot, G. Regula, G. Reinhart, J. Baruchel, F. Guittonneau, L. Barrallier, N. Mangelinck-Noël, Acta Mater. 115 (2016) 210–223.

[46] Pineau, A., Guillemot, G., Reinhart, G., Regula, G., Mangelinck-Noël, N., Gandin, C.-A., Acta Mater. 191 (2020) 230–244.

[47] K. Fujiwara, R. Maeda, K. Maeda, H. Morito, Scripta Mater. 133 (2017) 65-69

[48] S. Rouvimov, R. Kuytt, J. Kearns, V. Todt, B. Orschel, H. Siriwardane, A. Buczkowski, I. Shul’pina, and G. Rozgonyi, Solid State Phenom. 17 (2004) 95–96.

[49] T. Duffar, C. T.Nwosu, I. M. Asuo, J. Muzy, N.D.Q.Chau, Y. Du Terrail-Couvat, F. Robaut, J. Cryst. Growth 401 (2004) 404-408.

[50] M. Mokhtari, K.Fujiwara, H. Koizumi, J. Nozawa, S. Uda, Scr. Mater. 117 (2016) 73–76

[51] R. Gotoh, K. Fujiwara, X. Yang, H. Koizumi, J. Nozawa, S. Uda, Appl. Phys. Lett. 100 (2012) 021903

[52] L. Liu, S. Nakano, K. Kakimoto, J. Cryst. Growth 310 (2008) 2192–2197.

[53] H. Nishizawa, F. Hori, R. Oshima, J. Cryst. Growth 236 (2002) 51–58.

[54] T. Aoyama, K. Kuribayashi, Acta Mater. 48 (2000) 3739–3744.

[55] J.S. Im, H. Tomita, C. V. Thompson, Appl. Phys. Lett. 51 (1987) 685–687.

[56] A. Tandjaoui, N. Mangelinck-Noël, G. Reinhart, B. Billia, X. Guichard, Comptes Rendus Physique, 14 (2013), pp. 141-148

[57] T.B. Britton, J. Jiang a, Y. Guo, A. Vilalta-Clemente, D.Wallis, L.N. Hansen, A. Winkelmann, A.J. Wilkinson, Mater. Char., 117 (2016), pp. 113-126

[58] D. Dingley, J. Microsc. (Oxford) 213 (2004) 214–224.

[59] F.J. Humphreys, J. Mater. Sci. 36 (2001) 3833–3854.

[60] S. Kikuchi, Jap. Journal of Physics 5 (1928) 83-96, with plates V-VII

[61] P.W. Trimby, Ultramicroscopy 120 (2012) 16-24.

[62] R.A. Schwarzer, Microscopy Today 16 (January 2008) 34-37

[63] R.A. Schwarzer and J. Sukkau, Mat Sci Forum 273-275 (1998) 215-222.

[64] M. Tokairin, K. Fujiwara, K. Kutsukake, N. Usami, K. Nakajima, Phys. Rev. B 80 (2009) 174108.

[65] K. Fujiwara, R. Gotoh, X. B. Yang, H. Koizumi, J. Nozawa, S. Uda, Acta Mater. 59 (2011) 4700–4708.

[66] T. Hoshino, K. Mito, A. Nagashima, M. Miyata, Int. J. Thermophys. 7 (1986) 647–662.

[67] K.-W. Yi, H.-T. Chung, H.-W. Lee, J.-K. Yoon, J. Cryst. Growth 132 (1993) 451–460

[68] J. Callaway, H. C. von Baeyer, Phys. Rev. 120 (1960) 1149.

[69] H.-S. Kim, S. D. Kang, Y. Tang, R. Hanus, G. J. Snyder, Mater. Horizons 3 (2016)234.

[70] X. Liang, Phys. Rev. B 95 (2017) 155313.

[71] J.-P. Crocombette, L. Gelebart, J. Appl. Phys. 106 (2009) 083520.

[72] B. Fu, W. Lai, Y. Yuan, H. Xu, W. Liu, Nucl. Instrum. Methods Phys. Res. Sect. B, 303 (2013) 4–8.

[73] H.Y. Wang, N. Usami, K. Fujiwara, K. Kutsukake, K. Nakajima, Acta Mater. 57 (2009) 3268–3276.

[74] R. B. Ganesha, B. Ryningen, M. Syvertsen, E. Øvrelid, I. Saha, H. Tathgar , G. Rajeswaran, Energy Procedia 8 (2011) 371–376.

[75] T.Y. Wang, S.L. Hsu, C.C. Fei, K.M. Yei, W.C. Hsu, C.W. Lan, J. Cryst. Growth 311 (2009) 263–267.

[76] G. Stokkan, J. Cryst. Growth 384 (2013) 107–113.

[78] J. Chen, B. Chen, W. Lee, M. Fukuzawa, M. Yamada, T. Sekiguchi, Solid State Phenom. 19 (2009) 156–158.

[79] V. Stamelou, M.G. Tsoutsouva, T. Riberi-Béridot, G. Reinhart, G. Regula, J. Baruchel, N. Mangelinck-Noël, J. Cryst. Growth 479 (2017) 1–8.

[80] W. Miller, Journal of Crystal Growth, 325 (2011) 101–103.

[81] J. Pohl, M. Müller, A. Seidl, K. Albe, J. Cryst. Growth 312 (2010) 1411–1415.

[82] M.C. Flemings, Solidification Processing, United States of America, 1974

[83] V.V. Voronkov, Sov. Phys. – Crystall. 17 (1973) 807–813

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る