リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Anti-Blood Cancer Activities of Bioactive Compounds from Rice (Oryza sativa var. Koshihikari) and an Invasive Weed (Andropogon virginicus)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Anti-Blood Cancer Activities of Bioactive Compounds from Rice (Oryza sativa var. Koshihikari) and an Invasive Weed (Andropogon virginicus)

Anh La Hoang 広島大学

2022.09.20

概要

1. Background
Blood cancer (1.2 million cases per year) has been a serious human disease during a long history with a high mortality rate (58%). Therefore, this study was conducted to investigate promising candidates from plants for inhibiting blood cancer. Among plant sources, Adropogon virginicus is an invasive weed that distributes globally, threatening agriculture and economics in many countries. Thus, research on pharmaceutical properties may lead to further strategies to take advantage of this serious invasive weed that was once thought to be of no use. On the other hand, rice (Oryza sativa) is an important food crop in the world, which has been recently being received increasing attention for the research on medicinal purposes. In rice, momilactones are high valuable diterpene lactones exhibiting multiple biological benefits. Based on these reasons, we aimed (1) to explore potential phytochemicals and pharmaceutical properties of the invasive weed A. virginicus with focus on antioxidant, anti-skin aging, anti-diabetic, and anti-blood cancer properties and (2) to determine the potentials of momilactones isolated from rice (O. sativa var. Koshihikari) for preventing blood cancer.

2. Structure of dissertation
Chapter 1. General introduction
Chapter 2. Pharmaceutical properties of an invasive weed Andropogon virginicus
Chapter 3. Cytotoxic activities of momilactones against leukemia, lymphoma, and multiple myeloma cell lines
Chapter 4. Cytotoxic mechanism of momilactones against acute promyelocytic leukemia and multiple myeloma cell lines
Chapter 5. Effects of in vitro digestion on anti-blood cancer properties of momilactones Chapter 6. General discussion

3. Materials and methods
Materials
A. virginicus’ aerial plant parts were extracted by Soxhlet extraction method, followed by liquid-liquid phase extraction to obtain total crude (T-Anvi), hexane (H-Anvi), ethyl acetate, (E-Anvi), butanol (B-Anvi), and water (H-Anvi) extracts.

Momilactones were isolated and purified from the laboratory of Plant Physiology and Biochemistry, Hiroshima University, Japan (Quan et al., 2019b).

Biological activity
Antioxidant activities of samples were determined via antiradical (DPPH and ABTS), reducing power, β-carotene bleaching assays (Quan et al., 2019).

Enzymatic assays including tyrosinase and α-amylase inhibitory effects of A. virginicus’ extracts were evaluated following the method presented by Quan et al. (2019).

Anticancer assays consisting of MTT, annexin V apoptosis, cell cycle, and western blotting were conducted to screen the anticancer properties of momilactones. The corresponding cell lines for blood cancer were included leukemia (HL60, Meg-01, and K562), lymphoma (Mino), and myeloma (KMS-11 and U266). Besides, a non-cancerous cell line namely MeT-5A was used in this study.

In vitro digestion model
The effects of in vitro digestion on the bioaccessibility and cytotoxic activities of momilactones against blood cancer cell lines were investigated following the method described by Un et al. (2022).

Phytochemical analysis
The chemical analyses were conducted applying spectrophotometer, gas chromatography-mass spectrometry (GC-MS), and liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) methods.

4. Results and discussion
In Chapter 2, we indicate that the invasive weed A. virginicus may be a promising source of antioxidants, anti-⍺-amylase, and anti-tyrosinase abilities, and cytotoxicity against chronic myeloid leukemia cell lines. Besides, A. virginicus aerial parts are rich in flavonoids, palmitic acid, phytol, and γ-sitosterol, which may play a vital role in the biological activities of the respective extracts.

From Chapter 3, we highlight that MB and MAB can inhibit various blood cancer cell lines including leukemia, lymphoma, and multiple myeloma by inducing cell apoptosis. Notably, the cytotoxicity of MB and MAB is close to the well-known drugs of Doxorubicin in inhibiting Meg-01 and K562. Meanwhile these compounds are stronger than the widely applied medicines of Doxorubicin and Ibrutinib in suppressing HL-60 and U266, respectively. Whereas these compounds display an insignificant effect on non-cancerous cells.

In Chapter 4, MB and MAB at 5 µM promote acute promyelocytic leukemia (HL-60) and multiple myeloma (U266) cell apoptosis by activating the phosphorylation of p-38 in the mitogen-activated protein kinase (MAPK) pathway and regulating the relevant proteins (BCL-2 and caspase-3) in the mitochondrial pathway. Besides, these compounds may induce G2 phase arrest in HL-60 cell cycle through the activation of p-38 and disruption of CDK1 and cyclin B1 complex. Meanwhile MB and MAB show insignificant effects on cell apoptosis and cell cycle of non-cancerous cell line MeT-5A.

For Chapter 5, the finding shows that the bioaccessibility and cytotoxicity of momilactones significantly reduce through the digestive stages including oral, gastric, and intestinal phases.

A general discussion is presented in Chapter 6. Particularly, this is the first study to highlight that A. virginicus may be a promising source of antioxidant, anti-diabetic, anti-skin aging, and anti-blood cancer agents. In addition, momilactones isolated from rice (O. sativa var. Koshihikari) husks can inhibit blood cancer cell lines by regulating the proteins related to apoptosis and cell cycle pathways. However, cytotoxic activities of momilactones may be significantly decreased during digestion. Therefore, forthcoming studies should be conducted to improve the bioaccessibility of momilactones, followed by in vivo and clinical tests to confirm their capacity to develop novel anti-blood cancer drugs. In another aspect, the combination of momilactones from rice and isolated components from A. virginicus may be a potential approach for developing blood cancer treatments, especially for patients complicated with other health problems such as oxidative stress and chronic disorders.

この論文で使われている画像

参考文献

Pandey, A.K.; Mishra, A.K.; Mishra, A. Antifungal and antioxidative potential of oil and extracts derived from leaves of Indian spice plant Cinnamomum tamala. Cell. Mol. Biol. 2012, 58, 142–147.

Abolhasani Zadeh, F.; Mardasi, M.; Rahbaran, M.; Shojaei, B.S.; Rahimi, S.; Tambrchi, P.; Razeghian, E. Genistein impairs proliferation and induces apoptosis in human leukemia MOLT-4 cells by down-regulation of anti-apoptotic proteins. J. Cancer Res. Ther. 2022, 30, 22–27. https://doi.org/10.4993/acrt.30.22.

Ajaya Kumar, R.; Sridevi, K.; Vijaya Kumar, N.; Nanduri, S.; Rajagopal, S. Anticancer and immunostimulatory compounds from Andrographis paniculata. J. Ethnopharmacol. 2004, 92, 291–295. https://doi.org/10.1016/j.jep.2004.03.004.

Alencar, M.V.O.B.; Islam, M.T.; Ali, E.S.; Santos, J.V.O.; Paz, M.F.C.J.; Sousa, J.M.C.; Dantas, S.M.M.M.; Mishra, S.K.; Cavalcante, A.A.C.M. Association of phytol with toxic and cytotoxic activities in an antitumoral perspective: A meta-analysis and systemic review. Anticancer Agents Med. Chem. 2018, 18, 1828–1837, doi:10.2174/1871520618666180821113830.

Al-Saeedi, A.H.; Al-Ghafri, M.T.H.; Hossain, M.A. Comparative evaluation of total phenols, flavonoids content and antioxidant potential of leaf and fruit extracts of Omani Ziziphus jujuba L. Pac. Sci. Rev. A Nat. Sci. Eng. 2016, 18, 78–83, doi:10.1016/j.psra.2016.09.001.

Ambade, A.; Mandrekar, P. Oxidative stress and inflammation: Essential partners in alcoholic liver disease. Int. J. Hepatol. 2012, 2012, 853175, doi:10.1155/2012/853175.

Ameade, E.P.K.; Ibrahim, M.; Ibrahim, H.-S.; Habib, R.H.; Gbedema, S.Y. Concurrent use of herbal and orthodox medicines among residents of Tamale, northern Ghana, who patronize hospitals and herbal clinics. Evid. Based Complementary Altern. Med. 2018, 2018, 1–8. https://doi.org/10.1155/2018/1289125.

Weeds of Australia – Biosecurity Queensland Edition Fact Sheet, Andropogon virginicus. Available online: https://keyserver.lucidcentral.org/weeds/data/media/Html/andropogon_virginicus.pdf (accessed on 20 October 2020).

European and Mediterranean Plant Protection Organization. Andropogon virginicus L. Bull. OEPP/EPPO Bull. 2019, 49, 61–66, doi:10.1111/epp.12526.

Anh, L.H.; Quan, N.V.; Lam, V.Q.; Iuchi, Y.; Takami, A.; Teschke, R.; Xuan, T.D. Antioxidant, anti-tyrosinase, anti-α-amylase, and cytotoxic potentials of the invasive weed Andropogon virginicus. Plants 2020, 10, 69. https://doi.org/10.3390/plants10010069.

Balandier, P.; Collet, C.; Miller, J.H.; Reynolds, P.E.; Zedaker, S.M. Designing forest vegetation management strategies based on the mechanisms and dynamics of crop tree competition by neighbouring vegetation. Forestry 2006, 79, 3–27, doi:10.1093/forestry/cpi056.

Biswas, S.K. Does the interdependence between oxidative stress and inflammation explain the antioxidant paradox? Oxid. Med. Cell. Longev. 2016, 2016, 5698931, doi:10.1155/2016/5698931.

Biswas, S.K.; de Faria, J.B.L. Which comes first: Renal inflammation or oxidative stress in spontaneously hypertensive rats? Free Radic. Res. 2007, 41, 216–224, doi:10.1080/10715760601059672.

Boudreau, M.W.; Peh, J.; Hergenrother, P.J. Procaspase-3 overexpression in cancer: A paradoxical observation with therapeutic potential. ACS Chem. Biol. 2019, 14, 2335–2348. https://doi.org/10.1021/acschembio.9b00338.

Cachofeiro, V.; Goicochea, M.; de Vinuesa, S.D.; Oubina, P.; Lahera, V.; Luno, J. Oxidative stress and inflammation, a link between chronic kidney disease and cardiovascular disease. Kidney Int. Suppl. 2008, 111, S4–S9, doi:10.1038/ki.2008.516.

Cartwright, D.W.; Langcake, P.; Ride, J.P. Phytoalexin production in rice and its enhancement by a dichlorocyclopropane fungicide. Physiol. Plant Pathol. 1980, 17, 259-267. https://doi.org/10.1016/S0048-4059(80)80019-1.

Cheah, C.Y.; Seymour, J.F.; Wang, M.L. Mantle cell lymphoma. J. Clinic. Oncol. 2016, 34, 1256–1269. https://doi.org/10.1200/JCO.2015.63.5904.

Choi, Y.H.; Zhang, L.; Lee, W.H.; Park, K.Y. Genistein-induced G2/M arrest is associated with the inhibition of cyclin B1 and the induction of p21 in human breast carcinoma cells. Int. J. Oncol. 1998, 13, 391–396. https://doi.org/10.3892/ijo.13.2.391.

Chung, I.M.; Ali, M.; Hahn, S.J.; Siddiqui, N.A.; Lim, Y.H.; Ahmad, A. Chemical constituents from the hulls of Oryza sativa with cytotoxic activity. Chem. Nat. Compd. 2005, 41, 182–189. https://doi.org/10.1007/s10600-005-0108-9.

Collins, T. Acute and chronic inflammation. In Pathologic Basis of Disease; Cotran, R.S., Kumar, V., Collins, T., Eds.; WB Saunders: Philadelphia, PA, USA, 1999; pp. 50–88.

de Alencar, M.V.O.B.; Islam, M.T.; de Lima, R.M.T.; Paz, M.F.C.J.; Dos Reis, A.C.; da Mata, A.M.O.F.; Filho, J.W.G.O.; Cerqueira, G.S.; Ferreira, P.M.P.; Sousa, E.J.M.C.; Mubarak, M.S.; de Carvalho Melo-Cavalcante, A.A. Phytol as an anticarcinogenic and antitumoral agent: An in vivo study in swiss mice with DMBA-Induced breast cancer. IUBMB Life 2019, 71, 200–212, doi:10.1002/iub.1952.

Demirseren, D.D.; Emre, S.; Akoglu, G.; Arpacı, D.; Arman, A.; Metin, A.; Cakır, B. Relationship between skin diseases and extracutaneous complications of diabetes mellitus: Clinical analysis of 750 patients. Am. J. Clin. Dermatol. 2014, 15, 65–70, doi:10.1007/s40257-013-0048-2.

Elzaawely, A.A.; Xuan, T.D.; Koyama, H.; Tawata, S. Antioxidant activity and contents of essential oil and phenolic compounds in flowers and seeds of Alpinia zerumbet (Pers.) B.L. Burtt. & R.M. Sm. Food Chem. 2007, 104, 1648–1653, doi:10.1016/j.foodchem.2007.03.016.

Endrini, S.; Rahmat, A.; Ismail, P.; Taufiq-Yap, Y.H. Cytotoxic effect of γ-sitosterol from Kejibeling (Strobilanthes crispus) and its mechanism of action towards c-myc gene expression and apoptotic pathway. Med. J. Indones. 2014, 23, 203, doi:10.13181/mji.v23i4.1085.

Espinoza, J.L.; Elbadry, M.I.; Taniwaki, M.; Harada, K.; Trung, L.Q.; Nakagawa, N.; Takami, A.; Ishiyama, K.; Yamauchi, T.; Takenaka, K.; Nakao, S. The simultaneous inhibition of the mTOR and MAPK pathways with Gnetin-C induces apoptosis in acute myeloid leukemia. Cancer Lett. 2017, 400, 127–136. https://doi.org/10.1016/j.canlet.2017.04.027.

Fang, C.; Li, Y.; Li, C.; Li, B.; Ren, Y.; Zheng, H.; Zeng, X.; Shen, L.; Lin, W. Identification and comparative analysis of microRNAs in barnyardgrass (Echinochloa crus-galli) in response to rice allelopathy. Plant Cell Environ. 2015, 38, 1368–1381. https://doi.org/10.1111/pce.12492.

29. Ferenbach, D.A.; Bonventre, J.V. The molecular response to renal injury. In Kidney Development, Disease, Repair and Regeneration; Melissa, H.L., Ed.; Academic Press: Cambridge, United States, 2016; pp. 367–379. https://doi.org/10.1016/B978-0-12 800102- 8.00027-8.

Jaaks, P.; Coker, E.A.; Vis, D.J.; Edwards, O.; Carpenter, E.F.; Leto, S.M.; Dwane, L.; Sassi, F.; Lightfoot, H.; Barthorpe, S.; van der Meer, D.; Yang, W.; Beck, A.; Mironenko, T.; Hall, C.; Hall, J.; Mali, I.; Richardson, L.; Tolley, C.; Morris, J.; Thomas, F.; Lleshi, E.; Aben, N.; Benes, C.H.; Bertotti, A.; Trusolino, L.; Wessels, L.; Garnett, M.J. Effective drug combinations in breast, colon and pancreatic cancer cells. Nature 2022, 603, 166–173. https://doi.org/10.1038/s41586-022-04437-2.

Ji, L., Liu, T., Liu, J., Chen, Y., & Wang, Z. Andrographolide inhibits human hepatoma-derived Hep3B cell growth through the activation of c-Jun N-erminal kinase. Planta Medica 2007, 73, 1397–1401. https://doi.org/10.1055/s-2007-990230.

Fukuta, M.; Xuan, T.D.; Deba, F.; Tawata, S.; Khanh, T.D.; Chung, I.M. Comparative efficacies in vitro of antibacterial, fungicidal, antioxidant, and herbicidal activities of momilatones A and B. J. Plant Interact. 2007, 2, 245–251. https://doi.org/10.1080/17429140701713811.

Global cancer observatory (GLOBOCAN). Available online: https://gco.iarc.fr (accessed on 20 October 2020).

Grgić, J.; Šelo, G.; Planinić, M.; Tišma, M.; Bucić-Kojić, A. Role of the encapsulation in bioavailability of phenolic compounds. Antioxidants 2020, 9, 923. https://doi.org/10.3390/antiox9100923.

Hanamura, I. Gain/amplification of chromosome Arm 1q21 in multiple myeloma. Cancers 2021, 13, 256. https://doi.org/10.3390/cancers13020256.

Heim, K.E.; Tagliaferro, A.R.; Bobilya, D.J. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem. 2002, 13, 572–584. https://doi.org/10.1016/S0955-2863(02)00208-5.

Hideshima, T.; Akiyama, M.; Hayashi, T.; Richardson, P.; Schlossman, R.; Chauhan, D.; Anderson, K.C. Targeting p38 MAPK inhibits multiple myeloma cell growth in the bone marrow milieu. Blood 2003, 101, 703–705. https://doi.org/10.1182/blood-2002-06-1874.

Anh, L.H.; Xuan, T.D.; Thuy, N.T.D.; Quan, N.V.; Trang, L.T. Antioxidant and a-amylase inhibitory activities and phytocompounds of Clausena indica Fruits. Medicines 2020, 7, 10, doi:10.3390/medicines7030010.

Hodgkinson, A.J.; Wallace, O.A.M.; Boggs, I.; Broadhurst, M.; Prosser, C.G. Gastric digestion of cow and goat milk: Impact of infant and young child in vitro digestion conditions. Food Chem. 2018, 245, 275–281. https://doi.org/10.1016/j.foodchem.2017.10.028.

Hsu, C.-Y.; Wang, P.-W.; Alalaiwe, A.; Lin, Z.-C.; Fang, J.-Y. Use of lipid nanocarriers to improve oral delivery of vitamins. Nutrients 2019, 11, 68. https://doi.org/10.3390/nu11010068.

Cancer Treatment Centers of America (CTCA). Available online: https://www.cancercenter.com/blood-cancers (accessed on 20 October 2020).

Indrayanto, G.; Putra, G.S.; Suhud, F. Validation of in-vitro bioassay methods: Application in herbal drug research. In Profiles of Drug Substances, Excipients and Related Methodology; Al-Majed, A.A., Ed.; Academic Press: Cambridge, United States, 2021; 46, pp. 273–307. https://doi.org/10.1016/bs.podrm.2020.07.005.

Invasive Weed; Japan Livestock Technology Association (JLTA): Tokyo, Japan, 1994; pp. 31. Kang, D.Y.; Nipin, S.P.; Darvin, P.; Joung, Y.H.; Byun, H.J.; Do, C.H.; Park, K.; Park, M.N.; Cho, K.H.; Yang, Y.M. Momilactone B inhibits ketosis in vitro by regulating the ANGPTL3- LPL pathway and inhibiting HMGCS2. Anim. Biotechnol. 2017, 28, 189–197. https://doi.org/10.1080/10495398.2016.1252769.

Kato, T.; Kabuto, C.; Sasaki, N.; Tsunagawa, M.; Aizawa, H.; Fujita, K.; Kato, Y.; Kitahara, Y.; Takahashi, N. Momilactones, growth inhibitors from rice, Oryza sativa L. Tetrahedron Lett. 1973, 14, 3861–3864. https://doi.org/10.1016/S0040-4039(01)87058-1.

Kato-Noguchi, H. Stress-induced allelopathic activity and momilactone B in rice. Plant Growth Regul. 2009, 59, 153–158. https://doi.org/10.1007/s10725-009-9398-4.

Kato-Noguchi, H. Convergent or parallel molecular evolution of momilactone A and B: Potent allelochemicals, momilactones have been found only in rice and the moss Hypnum plumaeforme. J. Plant Physiol. 2011, 168, 1511–1516. https://doi.org/10.1016/j.jplph.2011.03.014,

Kato-Noguchi, H.; Hasegawa, M.; Ino, T.; Ota, K.; Kujime, H. Contribution of momilactone A and B to rice allelopathy. J. Plant Physiol. 2010. https://doi.org/10.1016/j.jplph.2010.01.014.

Kato-Noguchi, H.; Ota, K.; Kujime, H.; Ogawa, M. Effects of momilactone on the protein expression in Arabidopsis germination. Weed Biol. Manag. 2013, 13, 19–23. https://doi.org/10.1111/wbm.12005.

Kato-Noguchi, H.; Peters, R.J. The role of momilactones in rice allelopathy. J. Chem. Ecol. 2013. https://doi.org/10.1007/s10886-013-0236-9.

Kefayati, Z.; Motamed, S.M.; Shojaii, A.; Noori, M.; Ghods, R. Antioxidant activity and phenolic and flavonoid contents of the extract and subfractions of Euphorbia splendida Mobayen. Pharmacogn. Res. 2017, 9, 362–365, doi:10.4103/pr.pr_12_17.

Kim, S.-J.; Park, H.-R.; Park, E.; Lee, S.-C. Cytotoxic and antitumor activity of momilactone B from rice hulls. J. Agric. Food Chem. 2007, 55, 1702–1706. https://doi.org/10.1021/jf062020b.

Kong, F.; Singh, R.P. Disintegration of solid foods in human stomach. J. Food Sci. 2008a, 73, 67–80. https://doi.org/10.1111/j.1750-3841.2008.00766.x.

Kong, F.; Singh, R.P. A model stomach system to investigate disintegration kinetics of solid foods during gastric digestion. J. Food Sci. 2008b, 73, E202–E210. https://doi.org/10.1111/j.1750- 3841.2008.00745.x.

Kopustinskiene, D.M.; Jakstas, V.; Savickas, A.; Bernatoniene, J. Flavonoids as anticancer agents. Nutrients 2020, 12, 457, doi:10.3390/nu12020457.

Krzyzanowska, J.; Czubacka, A.; Oleszek, W. Dietary phytochemicals and human health. Adv. Exp. Med. Biol. 2010, 698, 74–98. https://doi.org/10.1007/978-1-4419-7347-4_7.

Kumar, S.; Kumar, V.; Prakash, O. Enzymes inhibition and antidiabetic effect of isolated constituents from Dillenia indica. Biomed Res. Int. 2013, 2013, 382063, doi:10.1155/2013/382063.

Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. Sci. World J. 2013, 2013, 162750, doi:10.1155/2013/162750.

Lam, V.Q.; Anh, L.H.; Quan, N.V.; Xuan, T.D.; Hanamura, I.; Uchino, K.; Karnan, S.; Takami, A. Cytotoxicity of Callerya speciosa fractions against myeloma and lymphoma cell lines. Molecules 2022, 27, 2322. https://doi.org/10.3390/molecules27072322.

Lee, C.W.; Yoneyama, K.; Takeuchi, Y.; Konnai, M.; Tamogami, S.; Kodama, O. Momilactones A and B in rice straw harvested at different growth stages. Biosci. Biotechnol. Biochem. 1999, 63, 1318–1320. https://doi.org/10.1271/bbb.63.1318.

Lee, S.C.; Chung, I.-M.; Jin, Y.J.; Song, Y.S.; Seo, S.Y.; Park, B.S.; Cho, K.H.; Yoo, K.S.; Kim, T.-H.; Yee, S.-B.; Bae, Y.-S.; Yoo, Y.H. Momilactone B, an allelochemical of rice hulls, induces apoptosis on human lymphoma cells (Jurkat) in a micromolar concentration. Nutr. Cancer 2008, 60, 542–551. https://doi.org/10.1080/01635580801927445.

Li, S.; Sun, L.; Zhou, Q.; Li, S.; Liu, X.; Xiao, J.; Xu, Y.; Wang, F.; Jiang, Y.; Zheng, C. Therapeutic effect and mechanism of Ibrutinib combined with dexamethasone on multiple myeloma. Pharmazie 2021, 76, 92–96.

Li, X.; Yin, X.; Wang, H.; Huang, J.; Yu, M.; Ma, Z.; Li, C.; Zhou, Y.; Yan, X.; Huang, S.; Jin, J. The combination effect of homoharringtonine and Ibrutinib on FLT3-ITD mutant acute myeloid leukemia. Oncotarget 2017, 8, 12764–12774. https://doi.org/10.18632/oncotarget.14463.

Libby, G.; Donnelly, L.A.; Donnan, P.T.; Alessi, D.R.; Morris, A.D.; Evans, J.M.M. New users of metformin are at low risk of incident cancer. Diabetes Care 2009, 32, 1620–1625. https://doi.org/10.2337/dc08-2175.

Lichota, A.; Gwozdzinski, K. Anticancer activity of natural compounds from plant and marine environment. Int. J. Mol. Sci. 2018, 19, 3533. https://doi.org/10.3390/ijms19113533.

Liu, G.; Franssen, E.; Fitch, M.I.; Warner, E. Patient preferences for oral versus intravenous palliative chemotherapy. J. Clin. Oncol. 1997, 15, 110–115. https://doi.org/10.1200/JCO.1997.15.1.110.

Maddocks, K.J.; Ruppert, A.S.; Lozanski, G.; Heerema, N.A.; Zhao, W.; Abruzzo, L.; Lozanski, A.; Davis, M.; Gordon, A.; Smith, L.L.; Mantel, R.; Jones, J.A.; Flynn, J.M.; Jaglowski, S.M.; Andritsos, L.A.; Awan, F.; Blum, K.A.; Grever, M.R.; Johnson, A.J.; Byrd, J.C.; Woyach, J.A. Etiology of Ibrutinib therapy discontinuation and outcomes in patients with chronic lymphocytic leukemia. JAMA Oncol. 2014, 1, 80–87. https://doi.org/10.1001/jamaoncol.2014.218.

Matthews, H.K.; Bertoli, C.; de Bruin, R.A.M. Cell cycle control in cancer. Nat. Rev. Mol. Cell Biol. 2022, 23, 74–88. https://doi.org/10.1038/s41580-021-00404-3.

Minh, T.N.; Xuan, T.D.; Ahmad, A.; Elzaawely, A.; Teschke, R.; Van, T.M. Efficacy from different extractions for chemical profile and biological activities of rice husk. Sustainability 2018, 10, 1356. https://doi.org/10.3390/su10051356.

Moen, M.D.; McKeage, K.; Plosker, G.L.; Siddiqui, M.A.A. Imatinib. Drugs 2007, 67, 299–320. https://doi.org/10.2165/00003495-200767020-00010.

Esa, M.N.; Ling, T.B. By-products of rice processing: An overview of health benefits and applications. Rice Res. 2016, 4. https://doi.org/10.4172/jrr.1000107.

National Institute for Environmental Studies (NIES). Available online: https://www.nies.go.jp/biodiversity/invasive/DB/detail/81450e.html (accessed on 20 October 2020).

NIH – National Cancer Institute. Available online: https://www.cancer.gov/publications/dictionaries/cancer-terms/def/white-blood-cell?fbclid=IwAR1Jr1RfMklHWtlLj2eQ_HdJp9xY6- h8OQHhYkg2fnQWBeDLJbzscm9tLO8 (accessed on 20 October 2020).

Otto, T.; Sicinski, P. Cell cycle proteins as promising targets in cancer therapy. Nat. Rev. Cancer 2017, 17, 93–115. https://doi.org/10.1038/nrc.2016.138.

Park, C.; Jeong, N.Y.; Kim, G.-Y.; Han, M.H.; Chung, I.-M.; Kim, W.-J.; Yoo, Y.H.; Choi, Y.H. Momilactone B induces apoptosis and G1 arrest of the cell cycle in human monocytic leukemia U937 cells through downregulation of pRB phosphorylation and induction of the cyclin-dependent kinase inhibitor p21Waf1/Cip1. Oncol. Rep. 2014, 31, 1653–1660. https://doi.org/10.3892/or.2014.3008.

Payne, S.A. A study of quality of life in cancer patients receiving palliative chemotherapy. Soc. Sci. Med. 1992, 35, 1505–1509. https://doi.org/10.1016/0277-9536(92)90053-S.

Pejin, B.; Kojic, V.; Bogdanovic, G. An insight into the cytotoxic activity of phytol at in vitro conditions. Nat. Prod. Res. 2014, 28, 2053–2056, doi:10.1080/14786419.2014.921686.

Pérez-Vicente, A.; Gil-Izquierdo, A.; García-Viguera, C. In vitro gastrointestinal digestion study of pomegranate juice phenolic compounds, anthocyanins, and vitamin C. J. Agric. Food Chem. 2002, 50, 2308–2312. https://doi.org/10.1021/jf0113833.

Pfeffer, C.; Singh, A. Apoptosis: A target for anticancer therapy. Int. J. Mol. Sci. 2018, 19, 448. https://doi.org/10.3390/ijms19020448.

Quan, N.V.; Anh, L.H.; Lam, V.Q.; Takami, A.; Teschke, R.; Khanh, T.D.; Xuan, T.D. Anti- diabetes, anti-gout, and anti-leukemia properties of essential oils from natural spices Clausena indica, Zanthoxylum rhetsa, and Michelia tonkinensis. Molecules 2022, 27, 774. https://doi.org/10.3390/molecules27030774.

Quan, N.V.; Thien, D.D.; Khanh, T.D.; Tran, H.-D.; Xuan, T.D. Momilactones A, B, and tricin in rice grain and by-products are potential skin aging inhibitors. Foods 2019a, 8, 602. https://doi.org/10.3390/foods8120602.

Quan, N.V.; Tran, H.-D.; Xuan, T.D.; Ahmad, A.; Dat, T.D.; Khanh, T.D.; Teschke, R. Momilactones A and B are α-amylase and α-glucosidase inhibitors. Molecules 2019b, 24, 482. https://doi.org/10.3390/molecules24030482.

Quan, N.V.; Xuan, T.D.; Anh, L.H.; Tran, H.-D. Bio-guided isolation of prospective bioactive constituents from roots of Clausena indica (Dalzell) Oliv. Molecules 2019c, 24, 4442, doi:10.3390/molecules24244442.

Quan, N.V.; Xuan, T.D.; Tran, H.-D.; Ahmad, A.; Khanh, T.D.; Dat, T.D. Contribution of momilactones A and B to diabetes inhibitory potential of rice bran: Evidence from in vitro assays. Saudi Pharm. J. 2019d, 27, 643–649. https://doi.org/10.1016/j.jsps.2019.03.006.

Quan, N.V.; Xuan, T.D.; Tran, H.-D.; Thuy, N.T.D. Inhibitory activities of momilactones A, B, E, and 7-Ketostigmasterol isolated from rice husk on paddy and invasive weeds. Plants 2019e, 8, 159. https://doi.org/10.3390/plants8060159.

Quan, N.V.; Xuan, T.D.; Tran, H.D.; Thuy, N.T.D.; Trang, L.T.; Huong, C.T.; Yusuf, A., Tuyen, P.T. Antioxidant, a-amylase and α-glucosidase inhibitory activities and potential constituents of Canarium tramdenum bark. Molecules 2019f, 24, 605, doi:10.3390/molecules24030605.

Quan, N.V.; Xuan, T.D.; Teschke, R. Potential hepatotoxins found in herbal medicinal products: A systematic review. Int. J. Mol. Sci. 2020, 21, 5011. https://doi.org/10.3390/ijms21145011.

Rahaie, S.; Gharibzahedi, S.M.T.; Razavi, S.H.; Jafari, S.M. Recent developments on new formulations based on nutrient-dense ingredients for the production of healthy-functional bread: a review. J. Food Sci. Technol. 2014, 51, 2896–2906. https://doi.org/10.1007/s13197-012-0833-6.

Rajkumar, S.V. Multiple myeloma: 2022 update on diagnosis, risk stratification, and management. Am. J. Hematol. 2022, 97, 1086–1107. https://doi.org/10.1002/ajh.26590.

Richardson, P.G.; Bensinger, W.I.; Huff, C.A.; Costello, C.L.; Lendvai, N.; Berdeja, J.G.; Anderson Jr, L.D.; Siegel, D.S.; Lebovic, D.; Jagannath, S.; Laubach, J.P.; Stockerl- Goldstein, K.E.; Kwei, L.; Clow, F.; Elias, L.; Salman, Z.; Graef, T.; Bilotti, E.; Vij, R. Ibrutinib alone or with dexamethasone for relapsed or relapsed and refractory multiple myeloma: phase 2 trial results. Br. J. Haematol. 2018, 180, 821–830. https://doi.org/10.1111/bjh.15058.

Rodrigues, A.C.B.D.C.; Bomfim, L.M.; Neves, S.P.; Soares, M.B.P.; Dias, R.B.; Valverde, L.F.; Rocha, C.A.G.; Costa, E.V.; da Silva, F.M.A.; Rocha, W.C.; Koolen, H.H.F.; Bezerra, D.P. Tingenone and 22-hydroxytingenone target oxidative stress through down-regulation of thioredoxin, leading to DNA double-strand break and JNK/p38-mediated apoptosis in acute myeloid leukemia HL-60 cells. Biomed. Pharmacother. 2021, 142, 112034. https://doi.org/10.1016/j.biopha.2021.112034.

Sakthivel, R.; Sheeja, D.; Kasi, M.; Devi, P. Phytol shows anti-angiogenic activity and induces apoptosis in A549 cells bydepolarizing the mitochondrial membrane potential. Biomed. Pharmacother. 2018, 105, 742–752, doi:10.1016/j.biopha.2018.06.035.

Sanz, M.A.; Fenaux, P.; Tallman, M.S.; Estey, E.H.; Löwenberg, B.; Naoe, T.; Lengfelder, E.; Döhner, H.; Burnett, A.K.; Chen, S.J.; Mathews, V.; Iland, H.; Rego, E.; Kantarjian, H.; Adès, L.; Avvisati, G.; Montesinos, P.; Platzbecker, U.; Ravandi, F.; Russell, N.H.; Lo- Coco, F. Management of acute promyelocytic leukemia: updated recommendations from an expert panel of the European LeukemiaNet. Blood 2019, 133, 1630–1643. https://doi.org/10.1182/blood-2019-01-894980.

Sesso, H.D.; Buring, J.E.; Christen, W.G.; Kurth, T.; Belanger, C.; MacFadyen, J.; Bubes, V.; Manson, J.E.; Glynn, R.J.; Gaziano, J.M. Vitamins E and C in the prevention of cardiovascular disease in men: The physicians’ health study II randomized controlled trial. JAMA 2008, 300, 2123–2133, doi:10.1001/jama.2008.600.

Sharma, N.; Dobhal, M.; Joshi, Y.; Chahar, M. Flavonoids: A versatile source of anticancer drugs. Pharmacogn. Rev. 2011, 5, 1. https://doi.org/10.4103/0973-7847.79093.

Chahar, M.K.; Sharma, N.; Dobhal, M.P.; Joshi, Y.C. Flavonoids: A versatile source of anticancer drugs. Pharmacogn. Rev. 2011, 5, 1–12, doi:10.4103/0973-7847.79093.

Simpson, M.G. Diversity and classification of flowering plants. In Plant Systematics; Simpson, M.G., Ed.; Elsevier, 2010; pp. 181–274. https://doi.org/10.1016/B978-0-12-374380- 0.50007-52010.

Sohail, M.; Rakha, A.; Butt, M.S.; Iqbal, M.J.; Rashid, S. Rice bran nutraceutics: A comprehensive review. Crit. Rev. Food Sci. Nutr. 2017, 57, 3771–3780. https://doi.org/10.1080/10408398.2016.1164120.

Şöhretoğlua, D.; Sarib, S.; Barutc, B.; Özelc, A. Tyrosinase inhibition by some flavonoids: Inhibitory activity, mechanism by T in vitro and in silico studies. Bioorganic Chem. 2018, 81, 168–174, doi:10.1016/j.bioorg.2018.08.020.

Soobrattee, M.A.; Neergheen, V.S.; Luximon-Ramma, A.; Aruoma, O.I.; Bahorun, T. Phenolics as potential antioxidant therapeutic agents: Mechanism and actions. Mutat. Res. Fundam. Mol. Mech. Mutagen. 2005, 579, 200–213, doi:10.1016/j.mrfmmm.2005.03.023.

Su, C.H.; Lai, M.N.; Ng, L.T. Inhibitory effects of medicinal mushrooms on a-amylase and α- glucosidase enzymes related to hyperglycemia. Food Funct. 2013, 4, 644–649, doi:10.1039/c3fo30376d.

Su, C.; Hsu, C.; Huang, L. Inhibitory potential of fatty acids on key enzymes related to type 2 diabetes. BioFactors 2013, 39, 415–421, doi:10.1002/biof.1082.

Sundarraj, S.; Thangam, R.; Sreevani, V.; Kaveri, K.; Gunasekaran, P.; Achiraman, S.; Kannan, S. γ-Sitosterol from Acacia nilotica L. induces G2/M cell cycle arrest and apoptosis through c-Myc suppression in MCF-7 and A549 cells. J. Ethnopharmacol. 2012, 141, 803–809, doi:10.1016/j.jep.2012.03.014.

Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J. Clin. 2021, 71, 209–249. https://doi.org/10.3322/caac.21660.

Tagousop, C.N.; Tamokou, J.-d.-D.; Ekom, S.E.; Ngnokam, D.; Voutquenne-Nazabadioko, L. Antimicrobial activities of flavonoid glycosides from Graptophyllum grandulosum and their mechanism of antibacterial action. BMC Complement. Altern. Med. 2018, 18, 252, doi:10.1186/s12906-018-2321-7.

Tarling, C.A.; Woods, K.; Zhang, R.; Brastianos, H.C.; Brayer, G.D.; Andersen, R.J.; Withers, S.G. The search for novel human pancreatic a-amylase inhibitors: High-throughput screening of terrestrial and marine natural product extracts. ChemBioChem 2008, 9, 433– 438, doi:10.1002/cbic.200700470.

Taşkın-Tok, T.; Gowder, S.J.T. Anticancer drug — friend or foe. In Pharmacology and Therapeutics; Gowder, S.J.T., Ed.; IntechOpen: London, UK, 2014. https://doi.org/10.5772/58552.

Teschke, T.; Eickhoff, A.; Wolff, A.; Xuan, T.D. Liver injury from herbs and “dietary supplements”: Highlights of a literature review from 2015 to 2017. Curr. Pharmacol. Rep. 2018, 4, 120–131, doi:10.1007/s40495-018-0124-7.

Teschke, R.; Larrey, D.; Melchart, D.; Danan, G. Traditional Chinese medicine (TCM) and herbal hepatotoxicity: RUCAM and the role of novel diagnostic biomarkers such as microRNAs. Medicines 2016, 3, 18, doi:10.3390/medicines3030018.

Teschke, R.; Xuan, T.D. Viewpoint: A contributory role of shell ginger (Alpinia zerumbet (Pers.) B.L. Burtt & R.M. Sm) for human longevity in Okinawa, Japan? Nutrients 2018, 10, 166, doi:10.3390/nu10020166.

Teschke, T.; Xuan, T.D. Herbs including shell ginger, antioxidant profiles, aging, and longevity in Okinawa, Japan: A critical analysis of current concepts. In Aging, 2nd ed.; Preedy, V.R., Patel, V.B., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 209–222, doi:10.1016/B978-0-12-818698-5.00021-3.

Teschke, R.; Xuan, T.D. Active nature-based ingredients for drug discovery with pivotal role of clinical efficacy: Review and prospective. J. Mod. Med. Chem. 2020, 8, 4–18, doi:10.12970/2308-8044.2020.08.02.

Testa, U.; Riccioni, R. Deregulation of apoptosis in acute myeloid leukemia. Haematologica 2007, 92, 81–94. https://doi.org/10.3324/haematol.10279.

Thavamoney, N.; Sivanadian, L.; Tee, L.H.; Khoo, H.E.; Prasad, K.N.; Kong, K.W. Extraction and recovery of phytochemical components and antioxidative properties in fruit parts of Dacryodes rostrata influenced by different solvents. J. Food Sci. Technol. 2018, 55, 2523– 2532, doi:10.1007/s13197-018-3170-6.

Thorn, C.F.; Oshiro, C.; Marsh, S.; Hernandez-Boussard, T.; McLeod, H.; Klein, T.E.; Altman, R.B. Doxorubicin pathways: Pharmacodynamics and adverse effects. Pharmacogenet. Genomics 2011, 21, 440–446. https://doi.org/10.1097/FPC.0b013e32833ffb56.

Tropicos – Missouri Botanical Garden. Available online: https://www.tropicos.org/name/25509277 (accessed on 20 October 2020).

Tsujimoto, Y. Role of Bcl-2 family proteins in apoptosis: apoptosomes or mitochondria?. Genes Cells 1998, 3, 697–707. https://doi.org/10.1046/j.1365-2443.1998.00223.x.

Tucker, P.S.; Scanlan, A.T.; Dalbo, V.J. Chronic kidney disease influences multiple systems: Describing the relationship between oxidative stress, inflammation, kidney damage, and concomitant disease. Oxid. Med. Cell. Longev. 2015, 2015, 806358, doi:10.1155/2015/806358.

Tuyen, P.T.; Xuan, T.D.; Khang, D.T.; Ahmad, A.; Quan, N.V.; Anh, T.T.T.; Anh, L.H.; Minh, T.N. Phenolic compositions and antioxidant properties in bark, flower, inner skin, kernel and leaf extracts of Castanea crenata Sieb. et Zucc. Antioxidants 2017, 6, 31, doi:10.3390/antiox6020031.

Un, S.; Quan, N.V.; Anh, L.H.; Lam, V.Q.; Takami, A.; Khanh, T.D.; Xuan, T.D. Effects of in vitro digestion on anti-α-amylase and cytotoxic potentials of Sargassum spp. Molecules 2022, 27, 2307. https://doi.org/10.3390/molecules27072307.

Veeramuthu, D.; Raja, W.R.T.; Al-Dhabi, N.A.; Savarimuthu, I. Flavonoids: Anticancer properties. In Flavonoids—From Biosynthesis to Human Health; Justino, G.C., Ed.; IntechOpen: London, UK, 2017, doi:10.5772/68095.

Wang, T.-H.; Wang, H.-S.; Soong, Y.-K. Paclitaxel-induced cell death. Cancer 2000, 88, 2619– 2628. https://doi.org/10.1002/1097-0142(20000601)88:11<2619::AID- CNCR26>3.0.CO;2-J.

Wootton-Beard, P.C.; Moran, A.; Ryan, L. Stability of the total antioxidant capacity and total polyphenol content of 23 commercially available vegetable juices before and after in vitro digestion measured by FRAP, DPPH, ABTS and Folin–Ciocalteu methods. Food Res. Int. 2011, 44, 217–224. https://doi.org/10.1016/j.foodres.2010.10.033.

Wu, H.; Hu, C.; Wang, A.; Weisberg, E.L.; Wang, W.; Chen, C.; Zhao, Z.; Yu, K.; Liu, J.; Wu, J.; Nonami, A.; Wang, L.; Wang, B.; Stone, R.M.; Liu, S.; Griffin, J.D.; Liu, J.; Liu, Q. Ibrutinib selectively targets FLT3-ITD in mutant FLT3-positive AML. Leukemia 2016, 30, 754–757. https://doi.org/10.1038/leu.2015.175.

Xie, J.; Wang, J.; Zhu, B. Genistein inhibits the proliferation of human multiple myeloma cells through suppression of nuclear factor-κB and upregulation of microRNA-29b. Mol. Med. Rep. 2016, 13, 1627–1632. https://doi.org/10.3892/mmr.2015.4740.

Xu, D.P.; Li, Y.; Meng, X.; Zhou, T.; Zhou, Y.; Zheng, J.; Zhang, J.J.; Li, H.B. Natural antioxidants in foods and medicinal plants: Extraction, assessment and resources. Int. J. Mol. Sci. 2017, 18, 96, doi:10.3390/ijms18010096.

Xuan, T.D.; Minh, T.N.; Anh, L.H.; Khanh, T.D. Allelopathic momilactones A and B are implied in rice drought and salinity tolerance, not weed resistance. Agron. Sustain. Dev. 2016, 36. https://doi.org/10.1007/s13593-016-0383-9.

Yip, K.W.; Reed, J.C. Bcl-2 family proteins and cancer. Oncogene 2008, 27, 6398–6406. https://doi.org/10.1038/onc.2008.307.

Zarubin, T.; Han, J. Activation and signaling of the p38 MAP kinase pathway. Cell Res. 2005, 15, 11–18. https://doi.org/10.1038/sj.cr.7290257.

Zhang, S.M.; Cook, N.R.; Albert, C.M.; Gaziano, J.M.; Buring, J.E.; Manson, J.E. Effect of combined folic acid, vitamin B6, and vitamin B12 on cancer risk in women. JAMA 2008, 300, 2012. https://doi.org/10.1001/jama.2008.555.

Zhang, Z.; Wang, C.Z.; Du, G.J.; Qi, L.W.; Calway, T.; He, T.C.; Du, W.; Yuan, C.S. Genistein induces G2/M cell cycle arrest and apoptosis via ATM/p53-dependent pathway in human colon cancer cells. Int. J. Oncol. 2013, 43, 289–296. https://doi.org/10.3892/ijo.2013.1946.

Zhao, M.; Cheng, J.; Guo, B.; Duan, J.; Che, C.-T. Momilactone and related diterpenoids as potential agricultural chemicals. J. Agric. Food Chem. 2018, 66, 7859–7872. https://doi.org/10.1021/acs.jafc.8b02602.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る