リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「光可逆的タンパク質ラベル化技術の開発」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

光可逆的タンパク質ラベル化技術の開発

Mashita Takato 東北大学

2022.03.25

概要

Cellular events are spatiotemporally regulated by the dynamics of various biomolecules, such as protein-protein interaction or protein translocation. For example, most posttranslational modifications such as phosphorylation, methylation, and acetylation promote the proximity of molecules to play deterministic roles in cellular processes. In the MAPK cascade, a receptor kinase activates Ras, and Raf translocates to the plasma membrane to form a dimer (Figure 1-1). 1 The recruitment of Raf to the plasma membrane and its dimerization are important for the activation of Raf. It has also been reported that the artificial anchoring of Raf to the plasma membrane can trigger signal transduction.2 Thus, protein function in the cell is strictly controlled by protein localization and dimerization.

Many scientists studying a biological process have gained access to powerful approaches for artificial control over protein functions. One approach, inducible dimerization, utilizes proteins that can be triggered to associate, bringing attached target proteins into proximity. Inducible dimerization systems were initially implemented with chemical ligands. 3-5 With chemically induced dimerization (CID) systems, two identical proteins (homodimerization) or two different proteins (heterodimerization) are induced to associate or dimerize upon addition of a chemical ligand.6-8 Furthermore, photo-activatable or photo-cleavable CID systems have been reported and attracted attention as a new chemical tool for the precise regulation of protein dynamics. 9-12 Using these photoresponsive CID systems as a chemical-biology tool, the molecular mechanisms of various cellular events have been revealed.13, 14

The other inducible dimerization systems employ photo-responsive proteins whose conformations are changed upon illumination.15-18 This approach termed optogenetics has allowed reversible induction of protein association or dimerization dependent on light. Several biological questions that have been difficult or impossible to be addressed with other tools have been solved with optogenetic tools that dynamically manipulate protein localization with high precision in space and time.19-21

この論文で使われている画像

参考文献

1-5. References (chapter 1)

1. Lavoie, H.; Therrien, M., Regulation of RAF protein kinases in ERK signalling. Nat. Rev. Mol. Cell Biol. 2015, 16 (5), 281-298.

2. Stokoe, D.; Macdonald, S. G.; Cadwallader, K.; Symons, M.; Hancock, J. F., Activation of Raf as a Result of Recruitment to the Plasma Membrane. Science 1994, 264 (5164), 1463–1467.

3. Spencer, D.; Wandless, T.; Schreiber, S.; Crabtree, G., Controlling signal transduction with synthetic ligands. Science 1993, 262 (5136), 1019–1024.

4. Belshaw, P. J.; Ho, S. N.; Crabtree, G. R.; Schreiber, S. L., Controlling protein association and subcellular localization with a synthetic ligand that induces heterodimerization of proteins. Proc. Natl. Acad. Sci. USA 1996, 93 (10), 4604–4607.

5. Bayle, J. H.; Grimley, J. S.; Stankunas, K.; Gestwicki, J. E.; Wandless, T. J.; Crabtree, G. R., Rapamycin Analogs with Differential Binding Specificity Permit Orthogonal Control of Protein Activity. Chem. Biol. 2006, 13 (1), 99–107.

6. Czlapinski, J. L.; Schelle, M. W.; Miller, L. W.; Laughlin, S. T.; Kohler, J. J.; Cornish, V. W.; Bertozzi, C. R., Conditional Glycosylation in Eukaryotic Cells Using a Biocompatible Chemical Inducer of Dimerization. J. Am. Chem. Soc. 2008, 130 (40), 13186–13187.

7. Lin, H.; Abida, W. M.; Sauer, R. T.; Cornish, V. W., Dexamethasone−Methotrexate:  An Efficient Chemical Inducer of Protein Dimerization In Vivo. J. Am. Chem. Soc. 2000, 122 (17), 4247–4248.

8. Liu, P.; Calderon, A.; Konstantinidis, G.; Hou, J.; Voss, S.; Chen, X.; Li, F.; Banerjee, S.; Hoffmann, J. E.; Theiss, C.; Dehmelt, L.; Wu, Y. W., A bioorthogonal small-molecule-switch system for controlling protein function in live cells. Angew. Chem. Int. Ed. 2014, 53 (38), 10049–55.

9. Karginov, A. V.; Zou, Y.; Shirvanyants, D.; Kota, P.; Dokholyan, N. V.; Young, D. D.; Hahn, K. M.; Deiters, A., Light Regulation of Protein Dimerization and Kinase Activity in Living Cells Using Photocaged Rapamycin and Engineered FKBP. J. Am. Chem. Soc. 2011, 133 (3), 420–423.

10. Miyamoto, T.; DeRose, R.; Suarez, A.; Ueno, T.; Chen, M.; Sun, T.-p.; Wolfgang, M. J.; Mukherjee, C.; Meyers, D. J.; Inoue, T., Rapid and orthogonal logic gating with a gibberellin-induced dimerization system. Nat. Chem. Biol. 2012, 8 (5), 465–470.

11. Umeda, N.; Ueno, T.; Pohlmeyer, C.; Nagano, T.; Inoue, T., A Photocleavable Rapamycin Conjugate for Spatiotemporal Control of Small GTPase Activity. J. Am. Chem. Soc. 2011, 133 (1), 12–14.

12.Brown, K. A.; Zou, Y.; Shirvanyants, D.; Zhang, J.; Samanta, S.; Mantravadi, P. K.; Dokholyan, N. V.; Deiters, A., Light-cleavable rapamycin dimer as an optical trigger for protein dimerization. Chem. Commun. 2015, 51 (26), 5702–5705.

13. Zhang, H.; Aonbangkhen, C.; Tarasovetc, E. V.; Ballister, E. R.; Chenoweth, D. M.; Lampson, M. A., Optogenetic control of kinetochore function. Nat. Chem. Biol. 2017, 13 (10), 1096–1101.

14. Akera, T.; Chmátal, L.; Trimm, E.; Yang, K.; Aonbangkhen, C.; Chenoweth, D. M.; Janke, C.; Schultz, R. M.; Lampson, M. A., Spindle asymmetry drives non-Mendelian chromosome segregation. Science 2017, 358 (6363), 668–672.

15. Kawano, F.; Suzuki, H.; Furuya, A.; Sato, M., Engineered pairs of distinct photoswitches for optogenetic control of cellular proteins. Nat. Commun. 2015, 6 (1), 6256.

16. Guntas, G.; Hallett, R. A.; Zimmerman, S. P.; Williams, T.; Yumerefendi, H.; Bear, J. E.; Kuhlman, B., Engineering an improved light-induced dimer (iLID) for controlling the localization and activity of signaling proteins. Proc. Natl. Acad. Sci. USA 2015, 112 (1), 112–117.

17. Kennedy, M. J.; Hughes, R. M.; Peteya, L. A.; Schwartz, J. W.; Ehlers, M. D.; Tucker, C. L., Rapid blue-light–mediated induction of protein interactions in living cells. Nat. Methods 2010, 7 (12), 973-975.

18. Levskaya, A.; Weiner, O. D.; Lim, W. A.; Voigt, C. A., Spatiotemporal control of cell signalling using a light-switchable protein interaction. Nature 2009, 461 (7266), 997–1001.

19.Bugaj, L. J.; Sabnis, A. J.; Mitchell, A.; Garbarino, J. E.; Toettcher, J. E.; Bivona, T. G.; Lim, W. A., Cancer mutations and targeted drugs can disrupt dynamic signal encoding by the Ras-Erk pathway. Science 2018, 361 (6405), eaao3048.

20. Toettcher, Jared E.; Weiner, Orion D.; Lim, Wendell A., Using Optogenetics to Interrogate the Dynamic Control of Signal Transmission by the Ras/Erk Module. Cell 2013, 155 (6), 1422–1434.

21. Toettcher, J. E.; Gong, D.; Lim, W. A.; Weiner, O. D., Light-based feedback for controlling intracellular signaling dynamics. Nat. Methods 2011, 8 (10), 837–839.

22.Benedetti, L.; Marvin, J. S.; Falahati, H.; Guillén-Samander, A.; Looger, L. L.; De Camilli, P., Optimized Vivid-derived Magnets photodimerizers for subcellular optogenetics in mammalian cells. eLife 2020, 9, e63230.

23. Hoelzel, C. A.; Zhang, X., Visualizing and Manipulating Biological Processes by Using HaloTag and SNAP-Tag Technologies. ChemBioChem 2020, 21 (14), 1935–1946.

24. Miller, L. W.; Cai, Y.; Sheetz, M. P.; Cornish, V. W., In vivo protein labeling with trimethoprim conjugates: a flexible chemical tag. Nat. Methods 2005, 2 (4), 255–257.

25. Los, G. V.; Encell, L. P.; McDougall, M. G.; Hartzell, D. D.; Karassina, N.; Zimprich, C.; Wood, M. G.; Learish, R.; Ohana, R. F.; Urh, M.; Simpson, D.; Mendez, J.; Zimmerman, K.; Otto, P.; Vidugiris, G.; Zhu, J.; Darzins, A.; Klaubert, D. H.; Bulleit, R. F.; Wood, K. V., HaloTag: A Novel Protein Labeling Technology for Cell Imaging and Protein Analysis. ACS Chem. Biol. 2008, 3 (6), 373–382.

26. Keppler, A.; Gendreizig, S.; Gronemeyer, T.; Pick, H.; Vogel, H.; Johnsson, K., A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat. Biotechnol. 2003, 21 (1), 86– 89.

27. Voß, S.; Klewer, L.; Wu, Y.-W., Chemically induced dimerization: reversible and spatiotemporal control of protein function in cells. Curr. Opin. Chem. Biol. 2015, 28, 194–201.

28. Kowada, T.; Arai, K.; Yoshimura, A.; Matsui, T.; Kikuchi, K.; Mizukami, S., Optical Manipulation of Subcellular Protein Translocation Using a Photoactivatable Covalent Labeling System. Angew. Chem. Int. Ed. 2021, 60 (20), 11378–11383.

29.Chen, X.; Venkatachalapathy, M.; Kamps, D.; Weigel, S.; Kumar, R.; Orlich, M.; Garrecht, R.; Hirtz, M.; Niemeyer, C. M.; Wu, Y.-W.; Dehmelt, L., “Molecular Activity Painting”: Switch-like, LightControlled Perturbations inside Living Cells. Angew. Chem. Int. Ed. 2017, 56 (21), 5916–5920.

30. Zimmermann, M.; Cal, R.; Janett, E.; Hoffmann, V.; Bochet, C. G.; Constable, E.; Beaufils, F.; Wymann, M. P., Cell-Permeant and Photocleavable Chemical Inducer of Dimerization. Angew. Chem. Int. Ed. 2014, 53 (18), 4717–4720.

31.Ballister, E. R.; Aonbangkhen, C.; Mayo, A. M.; Lampson, M. A.; Chenoweth, D. M., Localized lightinduced protein dimerization in living cells using a photocaged dimerizer. Nat. Commun. 2014, 5 (1), 5475.

32. Aonbangkhen, C.; Zhang, H.; Wu, D. Z.; Lampson, M. A.; Chenoweth, D. M., Reversible Control of Protein Localization in Living Cells Using a Photocaged-Photocleavable Chemical Dimerizer. J. Am. Chem. Soc. 2018, 140 (38), 11926–11930.

33.Chen, X.; Wu, Y.-W., Tunable and Photoswitchable Chemically Induced Dimerization for Chemooptogenetic Control of Protein and Organelle Positioning. Angew. Chem. Int. Ed. 2018, 57 (23), 6796– 6799.

2-7. References (chapter 2)

1. Brieke, C.; Rohrbach, F.; Gottschalk, A.; Mayer, G.; Heckel, A., Light-Controlled Tools. Angew. Chem. Int. Ed. 2012, 51 (34), 8446–8476.

2. Fenno, L.; Yizhar, O.; Deisseroth, K., The Development and Application of Optogenetics. Annu. Rev. Neurosci. 2011, 34 (1), 389–412.

3. Ellis-Davies, G. C. R., Caged compounds: photorelease technology for control of cellular chemistry and physiology. Nat. Methods 2007, 4 (8), 619–628.

4. Hansen, M. J.; Velema, W. A.; Lerch, M. M.; Szymanski, W.; Feringa, B. L., Wavelength-selective cleavage of photoprotecting groups: strategies and applications in dynamic systems. Chem. Soc. Rev. 2015, 44 (11), 3358–3377.

5. Nagel, G.; Szellas, T.; Huhn, W.; Kateriya, S.; Adeishvili, N.; Berthold, P.; Ollig, D.; Hegemann, P.; Bamberg, E., Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl. Acad. Sci. USA 2003, 100 (24), 13940–13945.

6. Szymański, W.; Beierle, J. M.; Kistemaker, H. A. V.; Velema, W. A.; Feringa, B. L., Reversible Photocontrol of Biological Systems by the Incorporation of Molecular Photoswitches. Chem. Rev. 2013, 113 (8), 6114–6178.

7. Irie, M.; Fukaminato, T.; Matsuda, K.; Kobatake, S., Photochromism of Diarylethene Molecules and Crystals: Memories, Switches, and Actuators. Chem. Rev. 2014, 114 (24), 12174–12277.

8. Hüll, K.; Morstein, J.; Trauner, D., In Vivo Photopharmacology. Chem. Rev. 2018, 118 (21), 10710– 10747.

9. Lerch, M. M.; Hansen, M. J.; van Dam, G. M.; Szymanski, W.; Feringa, B. L., Emerging Targets in Photopharmacology. Angew. Chem. Int. Ed. 2016, 55 (37), 10978–10999.

10. Velema, W. A.; Szymanski, W.; Feringa, B. L., Photopharmacology: Beyond Proof of Principle. J. Am. Chem. Soc. 2014, 136 (6), 2178–2191.

11. Broichhagen, J.; Frank, J. A.; Trauner, D., A Roadmap to Success in Photopharmacology. Acc. Chem. Res. 2015, 48 (7), 1947–1960.

12. Stein, M.; Middendorp, S. J.; Carta, V.; Pejo, E.; Raines, D. E.; Forman, S. A.; Sigel, E.; Trauner, D., Azo-Propofols: Photochromic Potentiators of GABAA Receptors. Angew. Chem. Int. Ed. 2012, 51 (42), 10500–10504.

13. Velema, W. A.; van der Berg, J. P.; Hansen, M. J.; Szymanski, W.; Driessen, A. J. M.; Feringa, B. L., Optical control of antibacterial activity. Nat. Chem. 2013, 5 (11), 924–928.

14.Broichhagen, J.; Jurastow, I.; Iwan, K.; Kummer, W.; Trauner, D., Optical Control of Acetylcholinesterase with a Tacrine Switch. Angew. Chem. Int. Ed. 2014, 53 (29), 7657–7660.

15. Wegener, M.; Hansen, M. J.; Driessen, A. J. M.; Szymanski, W.; Feringa, B. L., Photocontrol of Antibacterial Activity: Shifting from UV to Red Light Activation. J. Am. Chem. Soc. 2017, 139 (49), 17979–17986.

16. Ferreira, R.; Nilsson, J. R.; Solano, C.; Andréasson, J.; Grøtli, M., Design, Synthesis and Inhibitory Activity of Photoswitchable RET Kinase Inhibitors. Sci. Rep. 2015, 5 (1), 9769.

17. Engdahl, A. J.; Torres, E. A.; Lock, S. E.; Engdahl, T. B.; Mertz, P. S.; Streu, C. N., Synthesis, Characterization, and Bioactivity of the Photoisomerizable Tubulin Polymerization Inhibitor azoCombretastatin A4. Org. Lett. 2015, 17 (18), 4546–4549.

18.Borowiak, M.; Nahaboo, W.; Reynders, M.; Nekolla, K.; Jalinot, P.; Hasserodt, J.; Rehberg, M.; Delattre, M.; Zahler, S.; Vollmar, A.; Trauner, D.; Thorn-Seshold, O., Photoswitchable Inhibitors of Microtubule Dynamics Optically Control Mitosis and Cell Death. Cell 2015, 162 (2), 403–411.

19. Schoenberger, M.; Damijonaitis, A.; Zhang, Z.; Nagel, D.; Trauner, D., Development of a New Photochromic Ion Channel Blocker via Azologization of Fomocaine. ACS Chem. Neurosci. 2014, 5 (7), 514–518.

20. Pittolo, S.; Gómez-Santacana, X.; Eckelt, K.; Rovira, X.; Dalton, J.; Goudet, C.; Pin, J.-P.; Llobet, A.; Giraldo, J.; Llebaria, A.; Gorostiza, P., An allosteric modulator to control endogenous G protein-coupled receptors with light. Nat. Chem. Biol. 2014, 10 (10), 813–815.

21. Kwon, Y. K.; Higgins, M. B.; Rabinowitz, J. D., Antifolate-Induced Depletion of Intracellular Glycine and Purines Inhibits Thymineless Death in E. coli. ACS Chem. Biol. 2010, 5 (8), 787–795.

22. Miller, L. W.; Cai, Y.; Sheetz, M. P.; Cornish, V. W., In vivo protein labeling with trimethoprim conjugates: a flexible chemical tag. Nat. Methods 2005, 2 (4), 255–257.

23. Miller, L. W.; Sable, J.; Goelet, P.; Sheetz, M. P.; Cornish, V. W., Methotrexate Conjugates: A Molecular In Vivo Protein Tag. Angew. Chem. Int. Ed. 2004, 43 (13), 1672–1675.

24. Hynes, J. B.; Harmon, S. J.; Floyd, G. G.; Farrington, M.; Hart, L. D.; Gale, G. R.; Washtien, W. L.; Susten, S. S.; Freisheim, J. H., Chemistry and antitumor evaluation of selected classical 2,4- diaminoquinazoline analogs of folic acid. J. Med. Chem. 1985, 28 (2), 209–215.

25.Chen, X.; Wu, Y.-W., Tunable and Photoswitchable Chemically Induced Dimerization for Chemooptogenetic Control of Protein and Organelle Positioning. Angew. Chem. Int. Ed. 2018, 57 (23), 6796– 6799.

26. Aonbangkhen, C.; Zhang, H.; Wu, D. Z.; Lampson, M. A.; Chenoweth, D. M., Reversible Control of Protein Localization in Living Cells Using a Photocaged-Photocleavable Chemical Dimerizer. J. Am. Chem. Soc. 2018, 140 (38), 11926–11930.

27. Zhang, H.; Aonbangkhen, C.; Tarasovetc, E. V.; Ballister, E. R.; Chenoweth, D. M.; Lampson, M. A., Optogenetic control of kinetochore function. Nat. Chem. Biol. 2017, 13 (10), 1096–1101.

28.Ballister, E. R.; Aonbangkhen, C.; Mayo, A. M.; Lampson, M. A.; Chenoweth, D. M., Localized lightinduced protein dimerization in living cells using a photocaged dimerizer. Nat. Commun. 2014, 5 (1), 5475.

29. Matera, C.; Gomila, A. M. J.; Camarero, N.; Libergoli, M.; Soler, C.; Gorostiza, P., Photoswitchable Antimetabolite for Targeted Photoactivated Chemotherapy. J. Am. Chem. Soc. 2018, 140 (46), 15764– 15773.

30.Burchall, J. J.; Hitchings, G. H., Inhibitor binding analysis of dihydrofolate reductases from various species. Mol. Pharmacol. 1965, 1 (2), 126–36.

31. Mendoza-Martínez, C.; Correa-Basurto, J.; Nieto-Meneses, R.; Márquez-Navarro, A.; Aguilar-Suárez, R.; Montero-Cortes, M. D.; Nogueda-Torres, B.; Suárez-Contreras, E.; Galindo-Sevilla, N.; Rojas-Rojas, Á.; Rodriguez-Lezama, A.; Hernández-Luis, F., Design, synthesis and biological evaluation of quinazoline derivatives as anti-trypanosomatid and anti-plasmodial agents. Eur. J. Med. Chem. 2015, 96, 296–307.

32. Tomašić, T.; Zidar, N.; Rupnik, V.; Kovač, A.; Blanot, D.; Gobec, S.; Kikelj, D.; Mašič, L. P., Synthesis and biological evaluation of new glutamic acid-based inhibitors of MurD ligase. Bioorg. Med. Chem. Lett. 2009, 19 (1), 153–157.

33. Priewisch, B.; Rück-Braun, K., Efficient Preparation of Nitrosoarenes for the Synthesis of Azobenzenes. J. Org. Chem. 2005, 70 (6), 2350–2352.

34. Otremba, T.; Ravoo, B. J., Dynamic multivalent interaction of phenylboronic acid functionalized dendrimers with vesicles. Tetrahedron 2017, 73 (33), 4972–4978.

35. Terai, T.; Kohno, M.; Boncompain, G.; Sugiyama, S.; Saito, N.; Fujikake, R.; Ueno, T.; Komatsu, T.; Hanaoka, K.; Okabe, T.; Urano, Y.; Perez, F.; Nagano, T., Artificial Ligands of Streptavidin (ALiS): Discovery, Characterization, and Application for Reversible Control of Intracellular Protein Transport. J. Am. Chem. Soc. 2015, 137 (33), 10464–10467.

36.Blommel, P. G.; Fox, B. G., A combined approach to improving large-scale production of tobacco etch virus protease. Protein Expr. Purif. 2007, 55 (1), 53–68.

37. Miller, G. P.; Benkovic, S. J., Deletion of a Highly Motional Residue Affects Formation of the Michaelis Complex for Escherichia coli Dihydrofolate Reductase. Biochemistry 1998, 37 (18), 6327– 6335.

3-8. References (chapter 3)

1. Stanton, B. Z.; Chory, E. J.; Crabtree, G. R., Chemically induced proximity in biology and medicine. Science 2018, 359 (6380), eaao5902.

2. Lavoie, H.; Therrien, M., Regulation of RAF protein kinases in ERK signalling. Nat. Rev. Mol. Cell Biol. 2015, 16 (5), 281–298.

3. Tei, R.; Baskin, J. M., Induced proximity tools for precise manipulation of lipid signaling. Curr. Opin. Chem. Biol. 2021, 65, 93–100.

4. Passmore, J. B.; Nijenhuis, W.; Kapitein, L. C., From observing to controlling: Inducible control of organelle dynamics and interactions. Curr. Opin. Cell Biol. 2021, 71, 69–76.

5. Klewer, L.; Wu, Y.-W., Light-Induced Dimerization Approaches to Control Cellular Processes. Chem. Eur. J. 2019, 25 (54), 12452–12463.

6. Kawano, F.; Suzuki, H.; Furuya, A.; Sato, M., Engineered pairs of distinct photoswitches for optogenetic control of cellular proteins. Nat. Commun. 2015, 6 (1), 6256.

7. Guntas, G.; Hallett, R. A.; Zimmerman, S. P.; Williams, T.; Yumerefendi, H.; Bear, J. E.; Kuhlman, B., Engineering an improved light-induced dimer (iLID) for controlling the localization and activity of signaling proteins. Proc. Natl. Acad. Sci. USA 2015, 112 (1), 112–117.

8. Kennedy, M. J.; Hughes, R. M.; Peteya, L. A.; Schwartz, J. W.; Ehlers, M. D.; Tucker, C. L., Rapid blue-light–mediated induction of protein interactions in living cells. Nat. Methods 2010, 7 (12), 973–975.

9. Levskaya, A.; Weiner, O. D.; Lim, W. A.; Voigt, C. A., Spatiotemporal control of cell signalling using a light-switchable protein interaction. Nature 2009, 461 (7266), 997–1001.

10. Farahani, P. E.; Reed, E. H.; Underhill, E. J.; Aoki, K.; Toettcher, J. E., Signaling, Deconstructed: Using Optogenetics to Dissect and Direct Information Flow in Biological Systems. Annu. Rev. Biomed. Eng. 2021, 23 (1), 61–87.

11. Ma, G.; He, L.; Liu, S.; Xie, J.; Huang, Z.; Jing, J.; Lee, Y.-T.; Wang, R.; Luo, H.; Han, W.; Huang, Y.; Zhou, Y., Optogenetic engineering to probe the molecular choreography of STIM1-mediated cell signaling. Nat. Commun. 2020, 11 (1), 1039.

12.Bugaj, L. J.; Sabnis, A. J.; Mitchell, A.; Garbarino, J. E.; Toettcher, J. E.; Bivona, T. G.; Lim, W. A., Cancer mutations and targeted drugs can disrupt dynamic signal encoding by the Ras-Erk pathway. Science 2018, 361 (6405), eaao3048.

13. Toettcher, Jared E.; Weiner, Orion D.; Lim, Wendell A., Using Optogenetics to Interrogate the Dynamic Control of Signal Transmission by the Ras/Erk Module. Cell 2013, 155 (6), 1422–1434.

14. Kaberniuk, A. A.; Shemetov, A. A.; Verkhusha, V. V., A bacterial phytochrome-based optogenetic system controllable with near-infrared light. Nat. Methods 2016, 13 (7), 591–597.

15. Toettcher, J. E.; Gong, D.; Lim, W. A.; Weiner, O. D., Light-based feedback for controlling intracellular signaling dynamics. Nat. Methods 2011, 8 (10), 837–839.

16. Taslimi, A.; Zoltowski, B.; Miranda, J. G.; Pathak, G. P.; Hughes, R. M.; Tucker, C. L., Optimized second-generation CRY2–CIB dimerizers and photoactivatable Cre recombinase. Nat. Chem. Biol. 2016, 12 (6), 425–430.

17. Hallett, R. A.; Zimmerman, S. P.; Yumerefendi, H.; Bear, J. E.; Kuhlman, B., Correlating in Vitro and in Vivo Activities of Light-Inducible Dimers: A Cellular Optogenetics Guide. ACS Synth. Biol. 2016, 5 (1), 53–64.

18.Rutkowska, A.; Schultz, C., Protein Tango: The Toolbox to Capture Interacting Partners. Angew. Chem. Int. Ed. 2012, 51 (33), 8166–8176.

19.Belshaw, P. J.; Ho, S. N.; Crabtree, G. R.; Schreiber, S. L., Controlling protein association and subcellular localization with a synthetic ligand that induces heterodimerization of proteins. Proc. Natl. Acad. Sci. USA 1996, 93 (10), 4604–4607.

20. Voß, S.; Klewer, L.; Wu, Y.-W., Chemically induced dimerization: reversible and spatiotemporal control of protein function in cells. Curr. Opin. Chem. Biol. 2015, 28, 194–201.

21.Brown, K. A.; Zou, Y.; Shirvanyants, D.; Zhang, J.; Samanta, S.; Mantravadi, P. K.; Dokholyan, N. V.; Deiters, A., Light-cleavable rapamycin dimer as an optical trigger for protein dimerization. Chem. Commun. 2015, 51 (26), 5702–5705.

22. Karginov, A. V.; Zou, Y.; Shirvanyants, D.; Kota, P.; Dokholyan, N. V.; Young, D. D.; Hahn, K. M.; Deiters, A., Light Regulation of Protein Dimerization and Kinase Activity in Living Cells Using Photocaged Rapamycin and Engineered FKBP. J. Am. Chem. Soc. 2011, 133 (3), 420–423.

23. Kowada, T.; Arai, K.; Yoshimura, A.; Matsui, T.; Kikuchi, K.; Mizukami, S., Optical Manipulation of Subcellular Protein Translocation Using a Photoactivatable Covalent Labeling System. Angew. Chem. Int. Ed. 2021, 60 (20), 11378–11383.

24. Zimmermann, M.; Cal, R.; Janett, E.; Hoffmann, V.; Bochet, C. G.; Constable, E.; Beaufils, F.; Wymann, M. P., Cell-Permeant and Photocleavable Chemical Inducer of Dimerization. Angew. Chem. Int. Ed. 2014, 53 (18), 4717–4720.

25.Ballister, E. R.; Aonbangkhen, C.; Mayo, A. M.; Lampson, M. A.; Chenoweth, D. M., Localized lightinduced protein dimerization in living cells using a photocaged dimerizer. Nat. Commun. 2014, 5 (1), 5475.

26.Chen, X.; Wu, Y.-W., Tunable and Photoswitchable Chemically Induced Dimerization for Chemooptogenetic Control of Protein and Organelle Positioning. Angew. Chem. Int. Ed. 2018, 57 (23), 6796– 6799.

27. Aonbangkhen, C.; Zhang, H.; Wu, D. Z.; Lampson, M. A.; Chenoweth, D. M., Reversible Control of Protein Localization in Living Cells Using a Photocaged-Photocleavable Chemical Dimerizer. J. Am. Chem. Soc. 2018, 140 (38), 11926–11930.

28. Zhang, H.; Aonbangkhen, C.; Tarasovetc, E. V.; Ballister, E. R.; Chenoweth, D. M.; Lampson, M. A., Optogenetic control of kinetochore function. Nat. Chem. Biol. 2017, 13 (10), 1096–1101.

29. Akera, T.; Chmátal, L.; Trimm, E.; Yang, K.; Aonbangkhen, C.; Chenoweth, D. M.; Janke, C.; Schultz, R. M.; Lampson, M. A., Spindle asymmetry drives non-Mendelian chromosome segregation. Science 2017, 358 (6363), 668–672.

30. Los, G. V.; Encell, L. P.; McDougall, M. G.; Hartzell, D. D.; Karassina, N.; Zimprich, C.; Wood, M. G.; Learish, R.; Ohana, R. F.; Urh, M.; Simpson, D.; Mendez, J.; Zimmerman, K.; Otto, P.; Vidugiris, G.; Zhu, J.; Darzins, A.; Klaubert, D. H.; Bulleit, R. F.; Wood, K. V., HaloTag: A Novel Protein Labeling Technology for Cell Imaging and Protein Analysis. ACS Chem. Biol. 2008, 3 (6), 373–382.

31.Baccanari, D. P.; Daluge, S.; King, R. W., Inhibition of dihydrofolate reductase: effect of NADPH on the selectivity and affinity of diaminobenzylpyrimidines. Biochemistry 1982, 21 (20), 5068–5075.

32.Benedetti, L.; Barentine, A. E. S.; Messa, M.; Wheeler, H.; Bewersdorf, J.; De Camilli, P., Lightactivated protein interaction with high spatial subcellular confinement. Proc. Natl. Acad. Sci. USA 2018, 115 (10), E2238–E2245.

33.Benedetti, L.; Marvin, J. S.; Falahati, H.; Guillén-Samander, A.; Looger, L. L.; De Camilli, P., Optimized Vivid-derived Magnets photodimerizers for subcellular optogenetics in mammalian cells. eLife 2020, 9, e63230.

34.Cohen-Saidon, C.; Cohen, A. A.; Sigal, A.; Liron, Y.; Alon, U., Dynamics and Variability of ERK2 Response to EGF in Individual Living Cells. Mol. Cell 2009, 36 (5), 885–893.

35. Sugiura, A.; McLelland, G.-L.; Fon, E. A.; McBride, H. M., A new pathway for mitochondrial quality control: mitochondrial-derived vesicles. EMBO J. 2014, 33 (19), 2142–2156.

36. Ordureau, A.; Sarraf, Shireen A.; Duda, David M.; Heo, J.-M.; Jedrychowski, Mark P.; Sviderskiy, Vladislav O.; Olszewski, Jennifer L.; Koerber, James T.; Xie, T.; Beausoleil, Sean A.; Wells, James A.; Gygi, Steven P.; Schulman, Brenda A.; Harper, J. W., Quantitative Proteomics Reveal a Feedforward Mechanism for Mitochondrial PARKIN Translocation and Ubiquitin Chain Synthesis. Mol. Cell 2014, 56 (3), 360–375.

37. Kane, L. A.; Lazarou, M.; Fogel, A. I.; Li, Y.; Yamano, K.; Sarraf, S. A.; Banerjee, S.; Youle, R. J., PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J. Cell Biol. 2014, 205 (2), 143–153.

38. Lazarou, M.; Jin, Seok M.; Kane, Lesley A.; Youle, Richard J., Role of PINK1 Binding to the TOM Complex and Alternate Intracellular Membranes in Recruitment and Activation of the E3 Ligase Parkin. Dev. Cell 2012, 22 (2), 320–333.

39. Narendra, D. P.; Jin, S. M.; Tanaka, A.; Suen, D.-F.; Gautier, C. A.; Shen, J.; Cookson, M. R.; Youle, R. J., PINK1 Is Selectively Stabilized on Impaired Mitochondria to Activate Parkin. PLoS Biol. 2010, 8 (1), e1000298.

40. Kabeya, Y.; Mizushima, N.; Ueno, T.; Yamamoto, A.; Kirisako, T.; Noda, T.; Kominami, E.; Ohsumi, Y.; Yoshimori, T., LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 2000, 19 (21), 5720–5728.

41. Lazarou, M.; Sliter, D. A.; Kane, L. A.; Sarraf, S. A.; Wang, C.; Burman, J. L.; Sideris, D. P.; Fogel, A. I.; Youle, R. J., The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 2015, 524 (7565), 309–314.

42.Bingol, B.; Tea, J. S.; Phu, L.; Reichelt, M.; Bakalarski, C. E.; Song, Q.; Foreman, O.; Kirkpatrick, D. S.; Sheng, M., The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nature 2014, 510 (7505), 370–375.

43. Harper, J. W.; Ordureau, A.; Heo, J.-M., Building and decoding ubiquitin chains for mitophagy. Nat. Rev. Mol. Cell Biol. 2018, 19 (2), 93–108.

44. Okatsu, K.; Oka, T.; Iguchi, M.; Imamura, K.; Kosako, H.; Tani, N.; Kimura, M.; Go, E.; Koyano, F.; Funayama, M.; Shiba-Fukushima, K.; Sato, S.; Shimizu, H.; Fukunaga, Y.; Taniguchi, H.; Komatsu, M.; Hattori, N.; Mihara, K.; Tanaka, K.; Matsuda, N., PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria. Nat. Commun. 2012, 3 (1), 1016.

45. Keppler, A.; Gendreizig, S.; Gronemeyer, T.; Pick, H.; Vogel, H.; Johnsson, K., A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat. Biotechnol. 2003, 21 (1), 86– 89.

46. Miller, L. W.; Cai, Y.; Sheetz, M. P.; Cornish, V. W., In vivo protein labeling with trimethoprim conjugates: a flexible chemical tag. Nat. Methods 2005, 2 (4), 255–257.

47.Bonger, K. M.; van den Berg, R. J. B. H. N.; Knijnenburg, A. D.; Heitman, L. H.; Ijzerman, A. P.; Oosterom, J.; Timmers, C. M.; Overkleeft, H. S.; van der Marel, G. A., Synthesis and evaluation of homodimeric GnRHR antagonists having a rigid bis-propargylated benzene core. Biorg. Med. Chem. 2008, 16 (7), 3744–3758.

48. Singh, V.; Wang, S.; Chan, K. M.; Clark, S. A.; Kool, E. T., Genetically encoded multispectral labeling of proteins with polyfluorophores on a DNA backbone. J. Am. Chem. Soc. 2013, 135 (16), 6184–91.

49. Sato, R.; Kozuka, J.; Ueda, M.; Mishima, R.; Kumagai, Y.; Yoshimura, A.; Minoshima, M.; Mizukami, S.; Kikuchi, K., Intracellular Protein-Labeling Probes for Multicolor Single-Molecule Imaging of Immune Receptor-Adaptor Molecular Dynamics. J. Am. Chem. Soc. 2017, 139 (48), 17397–17404.

50. Newton, A. S.; Deiana, L.; Puleo, D. E.; Cisneros, J. A.; Cutrona, K. J.; Schlessinger, J.; Jorgensen, W. L., JAK2 JH2 Fluorescence Polarization Assay and Crystal Structures for Complexes with Three Small Molecules. ACS Med. Chem. Lett. 2017, 8 (6), 614–617.

51. Ando, T.; Tsukiji, S.; Tanaka, T.; Nagamune, T., Construction of a small-molecule-integrated semisynthetic split intein for in vivoprotein ligation. Chem. Commun. 2007, (47), 4995–4997.

52. Takaoka, Y.; Nishikawa, Y.; Hashimoto, Y.; Sasaki, K.; Hamachi, I., Ligand-directed dibromophenyl benzoate chemistry for rapid and selective acylation of intracellular natural proteins. Chem. Sci. 2015, 6 (5), 3217–3224.

53. Nikolovska-Coleska, Z.; Wang, R.; Fang, X.; Pan, H.; Tomita, Y.; Li, P.; Roller, P. P.; Krajewski, K.; Saito, N. G.; Stuckey, J. A.; Wang, S., Development and optimization of a binding assay for the XIAP BIR3 domain using fluorescence polarization. Anal. Biochem. 2004, 332 (2), 261–273.

54. Mashita, T.; Kowada, T.; Takahashi, H.; Matsui, T.; Mizukami, S., Light-Wavelength-Based Quantitative Control of Dihydrofolate Reductase Activity by Using a Photochromic Isostere of an Inhibitor. ChemBioChem 2019, 20 (11), 1382–1386.

55. Xu, D.; Farmer, A.; Collett, G.; Grishin, N. V.; Chook, Y. M., Sequence and structural analyses of nuclear export signals in the NESdb database. Mol. Biol. Cell 2012, 23 (18), 3677–3693.

56. Kalderon, D.; Roberts, B. L.; Richardson, W. D.; Smith, A. E., A short amino acid sequence able to specify nuclear location. Cell 1984, 39 (3), 499–509.

57.Choy, E.; Chiu, V. K.; Silletti, J.; Feoktistov, M.; Morimoto, T.; Michaelson, D.; Ivanov, I. E.; Philips, M. R., Endomembrane Trafficking of Ras: The CAAX Motif Targets Proteins to the ER and Golgi. Cell 1999, 98 (1), 69–80.

58. Komatsu, T.; Kukelyansky, I.; McCaffery, J. M.; Ueno, T.; Varela, L. C.; Inoue, T., Organelle-specific, rapid induction of molecular activities and membrane tethering. Nat. Methods 2010, 7 (3), 206–208.

59. Kanaji, S.; Iwahashi, J.; Kida, Y.; Sakaguchi, M.; Mihara, K., Characterization of the Signal That Directs Tom20 to the Mitochondrial Outer Membrane. J. Cell Biol. 2000, 151 (2), 277–288.

4-6. References (chapter 4)

1. Niu, J.; Ben Johny, M.; Dick, Ivy E.; Inoue, T., Following Optogenetic Dimerizers and Quantitative Prospects. Biophys. J. 2016, 111 (6), 1132–1140.

2. Nikolovska-Coleska, Z.; Wang, R.; Fang, X.; Pan, H.; Tomita, Y.; Li, P.; Roller, P. P.; Krajewski, K.; Saito, N. G.; Stuckey, J. A.; Wang, S., Development and optimization of a binding assay for the XIAP BIR3 domain using fluorescence polarization. Anal. Biochem. 2004, 332 (2), 261–273.

3. Forli, S.; Huey, R.; Pique, M. E.; Sanner, M. F.; Goodsell, D. S.; Olson, A. J., Computational protein– ligand docking and virtual drug screening with the AutoDock suite. Nat. Protoc. 2016, 11 (5), 905–919.

4. Mashita, T.; Kowada, T.; Takahashi, H.; Matsui, T.; Mizukami, S., Light-Wavelength-Based Quantitative Control of Dihydrofolate Reductase Activity by Using a Photochromic Isostere of an Inhibitor. ChemBioChem 2019, 20 (11), 1382–1386.

5. Cameron, C. E.; Benkovic, S. J., Evidence for a Functional Role of the Dynamics of Glycine-121 of Escherichia coli Dihydrofolate Reductase Obtained from Kinetic Analysis of a Site-Directed Mutant. Biochemistry 1997, 36 (50), 15792–15800.

5-7. References (chapter 5)

1. Mayer, G.; Heckel, A., Biologically Active Molecules with a “Light Switch”. Angew. Chem. Int. Ed. 2006, 45 (30), 4900–4921.

2. Brieke, C.; Rohrbach, F.; Gottschalk, A.; Mayer, G.; Heckel, A., Light-Controlled Tools. Angew. Chem. Int. Ed. 2012, 51 (34), 8446–8476.

3. Klewer, L.; Wu, Y. W., Light‐Induced Dimerization Approaches to Control Cellular Processes. Chem. Eur. J. 2019, 25 (54), 12452–12463.

4. Pelliccioli, A. P.; Wirz, J., Photoremovable protecting groups: reaction mechanisms and applications. Photochem. Photobiol. Sci. 2002, 1 (7), 441–458.

5. Kaplan, J. H.; Forbush, B., 3rd; Hoffman, J. F., Rapid photolytic release of adenosine 5'-triphosphate from a protected analogue: utilization by the Na:K pump of human red blood cell ghosts. Biochemistry 1978, 17 (10), 1929–35.

6. Canepari, M.; Nelson, L.; Papageorgiou, G.; Corrie, J. E. T.; Ogden, D., Photochemical and pharmacological evaluation of 7-nitroindolinyl-and 4-methoxy-7-nitroindolinyl-amino acids as novel, fast caged neurotransmitters. J. Neurosci. Methods 2001, 112 (1), 29–42.

7. Karginov, A. V.; Zou, Y.; Shirvanyants, D.; Kota, P.; Dokholyan, N. V.; Young, D. D.; Hahn, K. M.; Deiters, A., Light Regulation of Protein Dimerization and Kinase Activity in Living Cells Using Photocaged Rapamycin and Engineered FKBP. J. Am. Chem. Soc. 2011, 133 (3), 420–423.

8. Zimmermann, M.; Cal, R.; Janett, E.; Hoffmann, V.; Bochet, C. G.; Constable, E.; Beaufils, F.; Wymann, M. P., Cell-Permeant and Photocleavable Chemical Inducer of Dimerization. Angew. Chem. Int. Ed. 2014, 53 (18), 4717–4720.

9. Voß, S.; Klewer, L.; Wu, Y.-W., Chemically induced dimerization: reversible and spatiotemporal control of protein function in cells. Curr. Opin. Chem. Biol. 2015, 28, 194–201.

10. Kowada, T.; Arai, K.; Yoshimura, A.; Matsui, T.; Kikuchi, K.; Mizukami, S., Optical Manipulation of Subcellular Protein Translocation Using a Photoactivatable Covalent Labeling System. Angew. Chem. Int. Ed. 2021, 60 (20), 11378–11383.

11. Ballister, E. R.; Aonbangkhen, C.; Mayo, A. M.; Lampson, M. A.; Chenoweth, D. M., Localized lightinduced protein dimerization in living cells using a photocaged dimerizer. Nat. Commun. 2014, 5 (1), 5475.

12. Zhang, H.; Aonbangkhen, C.; Tarasovetc, E. V.; Ballister, E. R.; Chenoweth, D. M.; Lampson, M. A., Optogenetic control of kinetochore function. Nat. Chem. Biol. 2017, 13 (10), 1096–1101.

13. Aonbangkhen, C.; Zhang, H.; Wu, D. Z.; Lampson, M. A.; Chenoweth, D. M., Reversible Control of Protein Localization in Living Cells Using a Photocaged-Photocleavable Chemical Dimerizer. J. Am. Chem. Soc. 2018, 140 (38), 11926–11930.

14.Chen, X.; Venkatachalapathy, M.; Dehmelt, L.; Wu, Y.-W., Multidirectional Activity Control of Cellular Processes by a Versatile Chemo-optogenetic Approach. Angew. Chem. Int. Ed. 2018, 57 (37), 11993–11997.

15. Miller, L. W.; Cai, Y.; Sheetz, M. P.; Cornish, V. W., In vivo protein labeling with trimethoprim conjugates: a flexible chemical tag. Nat. Methods 2005, 2 (4), 255–257.

16.Beharry, A. A.; Woolley, G. A., Azobenzene photoswitches for biomolecules. Chem. Soc. Rev. 2011, 40 (8), 4422–4437.

17. Szymański, W.; Beierle, J. M.; Kistemaker, H. A. V.; Velema, W. A.; Feringa, B. L., Reversible Photocontrol of Biological Systems by the Incorporation of Molecular Photoswitches. Chem. Rev. 2013, 113 (8), 6114–6178.

18. Hüll, K.; Morstein, J.; Trauner, D., In Vivo Photopharmacology. Chem. Rev. 2018, 118 (21), 10710– 10747.

19.Broichhagen, J.; Frank, J. A.; Trauner, D., A Roadmap to Success in Photopharmacology. Acc. Chem. Res. 2015, 48 (7), 1947–1960.

20.Borowiak, M.; Nahaboo, W.; Reynders, M.; Nekolla, K.; Jalinot, P.; Hasserodt, J.; Rehberg, M.; Delattre, M.; Zahler, S.; Vollmar, A.; Trauner, D.; Thorn-Seshold, O., Photoswitchable Inhibitors of Microtubule Dynamics Optically Control Mitosis and Cell Death. Cell 2015, 162 (2), 403–411.

21. Wegener, M.; Hansen, M. J.; Driessen, A. J. M.; Szymanski, W.; Feringa, B. L., Photocontrol of Antibacterial Activity: Shifting from UV to Red Light Activation. J. Am. Chem. Soc. 2017, 139 (49), 17979–17986.

22. Mashita, T.; Kowada, T.; Takahashi, H.; Matsui, T.; Mizukami, S., Light-Wavelength-Based Quantitative Control of Dihydrofolate Reductase Activity by Using a Photochromic Isostere of an Inhibitor. ChemBioChem 2019, 20 (11), 1382–1386.

23. Matera, C.; Gomila, A. M. J.; Camarero, N.; Libergoli, M.; Soler, C.; Gorostiza, P., Photoswitchable Antimetabolite for Targeted Photoactivated Chemotherapy. J. Am. Chem. Soc. 2018, 140 (46), 15764– 15773.

24. Weston, C. E.; Richardson, R. D.; Haycock, P. R.; White, A. J. P.; Fuchter, M. J., Arylazopyrazoles: Azoheteroarene Photoswitches Offering Quantitative Isomerization and Long Thermal Half-Lives. J. Am. Chem. Soc. 2014, 136 (34), 11878–11881.

25.Calbo, J.; Weston, C. E.; White, A. J. P.; Rzepa, H. S.; Contreras-García, J.; Fuchter, M. J., Tuning Azoheteroarene Photoswitch Performance through Heteroaryl Design. J. Am. Chem. Soc. 2017, 139 (3), 1261–1274.

26. Stank, A.; Kokh, D. B.; Fuller, J. C.; Wade, R. C., Protein Binding Pocket Dynamics. Acc. Chem. Res. 2016, 49 (5), 809–815.

27.Czekster, C. M.; Vandemeulebroucke, A.; Blanchard, J. S., Kinetic and chemical mechanism of the dihydrofolate reductase from Mycobacterium tuberculosis. Biochemistry 2011, 50 (3), 367–75.

28. Nikolovska-Coleska, Z.; Wang, R.; Fang, X.; Pan, H.; Tomita, Y.; Li, P.; Roller, P. P.; Krajewski, K.; Saito, N. G.; Stuckey, J. A.; Wang, S., Development and optimization of a binding assay for the XIAP BIR3 domain using fluorescence polarization. Anal. Biochem. 2004, 332 (2), 261–273.

29. Velema, W. A.; Van Der Berg, J. P.; Hansen, M. J.; Szymanski, W.; Driessen, A. J. M.; Feringa, B. L., Optical control of antibacterial activity. Nat. Chem. 2013, 5 (11), 924–928.

参考文献をもっと見る