リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Secretion of signal peptides via extracellular vesicles」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Secretion of signal peptides via extracellular vesicles

Ono, Kenji Niwa, Mikio Suzuki, Hiromi Kobayashi, Nahoko Bailey Yoshida, Tetsuhiko Sawada, Makoto 名古屋大学

2021.06.30

概要

Signal peptides (SPs) consist of short peptide sequences present at the N-terminal of newly synthesizing proteins and act as a zip code for the translocation of the proteins to the endoplasmic reticulum (ER). It was thought that the SPs are intracellularly degraded after translocation to the ER; however, recent studies showed cleaved SPs have diverse roles for controlling cell functions in auto- and/or intercellular manners. In addition, it still remains obscure how SP fragments translocate away from the site where they are produced. Extracellular vesicles (EV) are important for intercellular communication and can transport functional molecules to specific cells. In this study, we show that SPs are involved in EV from T-REx AspALP cells that were transfected with a human APP SP-inducible expression vector. There was no difference in the average particle size or particle concentration of EV collected from T-REx AspALP cells and T-REx Mock cells. When the SP content in the EV was examined by mass spectrometry, the C-terminal fragment of APP SP was identified in the exosomes (SEV) of T-REx AspALP cells. In our preparation of SEV fractions, no ER-specific proteins were detected; therefore, SPs may be included in SEV but not in the debris of degraded ER. This is the first indication that SPs are secreted from cells via EV.

この論文で使われている画像

参考文献

[1] R.C. Jackson, G. Blobel, Post-translational cleavage of presecretory proteins with an extract of rough microsomes from dog pancreas containing signal peptidase activity., Proc. Natl. Acad. Sci. U. S. A. 74 (1977) 5598–5602. https://doi.org/10.1073/pnas.74.12.5598.

[2] A. Weihofen, K. Binns, M.K. Lemberg, K. Ashman, B. Martoglio, Identification of signal peptide peptidase, a presenilin-type aspartic protease, Science (80-. ). 296 (2002) 2215–2218. https://doi.org/10.1126/science.1070925.

[3] C. Van Vliet, E.C. Thomas, A. Merino-Trigo, R.D. Teasdale, P.A. Gleeson, Intracellular sorting and transport of proteins, Prog. Biophys. Mol. Biol. 83 (2003) 1–45. https://doi.org/10.1016/S0079-6107(03)00019-1.

[4] H. Owji, N. Nezafat, M. Negahdaripour, A. Hajiebrahimi, Y. Ghasemi, A comprehensive review of signal peptides: Structure, roles, and applications, Eur. J. Cell Biol. 97 (2018) 422–441. https://doi.org/10.1016/j.ejcb.2018.06.003.

[5] C. Kojima, Y. Narita, Y. Nakajima, N. Morimoto, T. Yoshikawa, N. Takahashi, A. Handa, T. Waku, N. Tanaka, Modulation of Cell Adhesion and Differentiation on Collagen Gels by the Addition of the Ovalbumin Secretory Signal Peptide, (2019). https://doi.org/10.1021/acsbiomaterials.8b01505.

[6] H.T. Chang, Y.L. Kao, C.M. Wu, T.C. Fan, Y.K. Lai, K.L. Huang, Y.S. Chang, J.J. Tsai, M.D.T. Chang, Signal peptide of eosinophil cationic protein upregulates transforming growth factor-alpha expression in human cells, J. Cell. Biochem. 100 (2007) 1266–1275. https://doi.org/10.1002/jcb.21120.

[7] K. V. Routhu, N.E. Tsopanoglou, J.L. Strande, Parstatin(1-26): The putative signal peptide of protease-activated receptor 1 confers potent protection from myocardial ischemia-reperfusion injury, J. Pharmacol. Exp. Ther. 332 (2010) 898–905. https://doi.org/10.1124/jpet.109.162602.

[8] M. Siriwardena, T. Kleffmann, P. Ruygrok, V.A. Cameron, T.G. Yandle, M.G. Nicholls, A.M. Richards, C.J. Pemberton, B-type natriuretic peptide signal peptide circulates in human blood: Evaluation as a potential biomarker of cardiac ischemia, Circulation. 122 (2010) 255–264. https://doi.org/10.1161/CIRCULATIONAHA.109.909937.

[9] G. Raposo, W. Stoorvogel, Extracellular vesicles: Exosomes, microvesicles, and friends, J. Cell Biol. 200 (2013) 373–383. https://doi.org/10.1083/jcb.201211138.

[10] F. Yao, T. Svensjö, T. Winkler, M. Lu, C. Eriksson, E. Eriksson, Tetracycline repressor, tetR, rather than the tetR-mammalian cell transcription factor fusion derivatives, regulates inducible gene expression in mammalian cells, Hum. Gene Ther. 9 (1998) 1939–1950. https://doi.org/10.1089/hum.1998.9.13-1939.

[11] S. High, B. Dobberstein, Mechanisms that determine the transmembrane disposition of proteins, Curr. Opin. Cell Biol. 4 (1992) 581–586. https://doi.org/10.1016/0955-0674(92)90075-N.

[12] G. von Heijne, Towards a comparative anatomy of N-terminal topogenic protein sequences, J. Mol. Biol. 189 (1986) 239–242. https://doi.org/10.1016/0022-2836(86)90394-3.

[13] M. Sakaguchi, R. Tomiyoshi, T. Kuroiwa, K. Mihara, T. Omura, Functions of signal and signal-anchor sequences are determined by the balance between the hydrophobic segment and the N-terminal charge, Proc. Natl. Acad. Sci. U. S. A. 89 (1992) 16–19. https://doi.org/10.1073/pnas.89.1.16.

[14] B. Martoglio, R. Graf, B. Dobberstein, Signal peptide fragments of preprolactin and HIV-1 p-gp160 interact with calmodulin, EMBO J. (1997). https://doi.org/10.1093/emboj/16.22.6636.

[15] D. Chin, A.R. Means, Calmodulin: A prototypical calcium sensor, Trends Cell Biol. (2000). https://doi.org/10.1016/S0962-8924(00)01800-6.

[16] C.J. Pemberton, M. Siriwardena, T. Kleffmann, P. Ruygrok, S.C. Palmer, T.G. Yandle, A.M. Richards, First identification of circulating prepro-A-type natriuretic peptide (preproANP) signal peptide fragments in humans: Initial assessment as cardiovascular biomarkers, Clin. Chem. (2012). https://doi.org/10.1373/clinchem.2011.176990.

[17] J. Lee, M. Than, S. Aldous, R. Troughton, M. Richards, C.J. Pemberton, CNP Signal Peptide in Patients with Cardiovascular Disease, Front. Cardiovasc. Med. (2015). https://doi.org/10.3389/fcvm.2015.00028.

参考文献をもっと見る