リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Skeletal myotube-derived extracellular vesicles enhance itaconate production and attenuate inflammatory responses of macrophages」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Skeletal myotube-derived extracellular vesicles enhance itaconate production and attenuate inflammatory responses of macrophages

Yamaguchi, Atomu Maeshige, Noriaki Yan, Jiawei Ma, Xiaoqi Uemura, Mikiko Matsuda, Mami Nishimura, Yuya Hasunuma, Tomohisa Kondo, Hiroyo Fujino, Hidemi Yuan, Zhi-Min 神戸大学

2023.03.02

概要

Introduction Macrophages play an important role in the innate immunity. While macrophage inflammation is necessary for biological defense, it must be appropriately controlled. Extracellular vesicles (EVs) are small vesicles released from all types of cells and play a central role in intercellular communication. Skeletal muscle has been suggested to release anti-inflammatory factors, but the effect of myotube-derived EVs on macrophages is unknown. As an anti-inflammatory mechanism of macrophages, the immune responsive gene 1 (IRG1)-itaconate pathway is essential. In this study, we show that skeletal muscle-derived EVs suppress macrophage inflammatory responses, upregulating the IRG1-itaconate pathway. Methods C2C12 myoblasts were differentiated into myotubes and EVs were extracted by ultracentrifugation. Skeletal myotube-derived EVs were administered to mouse bone marrow-derived macrophages, then lipopolysaccharide (LPS) stimulation was performed and inflammatory cytokine expression was measured by RT-qPCR. Metabolite abundance in macrophages after addition of EVs was measured by CE/MS, and IRG1 expression was measured by RT-PCR. Furthermore, RNA-seq analysis was performed on macrophages after EV treatment. Results EVs attenuated the expression of LPS-induced pro-inflammatory factors in macrophages. Itaconate abundance and IRG1 expression were significantly increased in the EV-treated group. RNA-seq analysis revealed activation of the PI3K-Akt and JAK-STAT pathways in macrophages after EV treatment. The most abundant miRNA in myotube EVs was miR-206-3p, followed by miR-378a-3p, miR-30d-5p, and miR-21a-5p. Discussion Skeletal myotube EVs are supposed to increase the production of itaconate via upregulation of IRG1 expression and exhibited an anti-inflammatory effect in macrophages. This anti-inflammatory effect was suggested to involve the PI3K-Akt and JAK-STAT pathways. The miRNA profiles within EVs implied that miR-206-3p, miR-378a-3p, miR-30d-5p, and miR-21a-5p may be responsible for the anti-inflammatory effects of the EVs. In summary, in this study we showed that myotube-derived EVs prevent macrophage inflammatory responses by activating the IRG1-itaconate pathway.

この論文で使われている画像

参考文献

22. Ogger PP, Albers GJ, Hewitt RJ, O'Sullivan BJ, Powell JE, Calamita E, et al.

Itaconate controls the severity of pulmonary fibrosis. Sci Immunol (2020) 5(52):

eabc1884. doi: 10.1126/sciimmunol.abc1884

1. Weiss G, Schaible UE. Macrophage defense mechanisms against intracellular

bacteria. Immunol Rev (2015) 264(1):182–203. doi: 10.1111/imr.12266

2. Orecchioni M, Ghosheh Y, Pramod AB, Ley K. Corrigendum: Macrophage

polarization: Different gene signatures in M1(LPS+) vs. classically and M2(LPS-) vs.

alternatively activated macrophages. Front Immunol (2020) 11:234. doi: 10.3389/

fimmu.2020.00234

23. Olagnier D, Farahani E, Thyrsted J, Blay-Cadanet J, Herengt A, Idorn M, et al.

SARS-CoV2-mediated suppression of NRF2-signaling reveals potent antiviral and antiinflammatory activity of 4-octyl-itaconate and dimethyl fumarate. Nat Commun (2020)

11(1):4938. doi: 10.1038/s41467-020-18764-3

3. Funes SC, Rios M, Escobar-Vera J, Kalergis AM. Implications of macrophage

polarization in autoimmunity. Immunology (2018) 154(2):186–95. doi: 10.1111/imm.12910

24. Song H, Xu T, Feng X, Lai Y, Yang Y, Zheng H, et al. Itaconate prevents

abdominal aortic aneurysm formation through inhibiting inflammation via activation

of Nrf2. EBioMedicine (2020) 57:102832. doi: 10.1016/j.ebiom.2020.102832

4. Harrell CR, Jovicic N, Djonov V, Arsenijevic N, Volarevic V. Mesenchymal stem

cell-derived exosomes and other extracellular vesicles as new remedies in the therapy of

inflammatory diseases. Cells (2019) 8(12):1605. doi: 10.3390/cells8121605

25. Zhang S, Jiao Y, Li C, Liang X, Jia H, Nie Z, et al. Dimethyl itaconate alleviates

the inflammatory responses of macrophages in sepsis. Inflammation (2021) 44(2):549–

57. doi: 10.1007/s10753-020-01352-4

5. Andaloussi S EL, Mäger I, Breakefield XO, Wood MJ. Extracellular vesicles:

Biology and emerging therapeutic opportunities. Nat Rev Drug Discov (2013) 12

(5):347–57. doi: 10.1038/nrd3978

26. Lampropoulou V, Sergushichev A, Bambouskova M, Nair S, Vincent EE,

Loginicheva E, et al. Itaconate links inhibition of succinate dehydrogenase with

macrophage metabolic remodeling and regulation of inflammation. Cell Metab

(2016) 24(1):158–66. doi: 10.1016/j.cmet.2016.06.004

6. Kalluri R, LeBleu VS. The biology, function, and biomedical applications of

exosomes. Science (2020) 367(6478):eaau6977. doi: 10.1126/science.aau6977

7. Trovato E, Di Felice V, Barone R. Extracellular vesicles: Delivery vehicles of

myokines. Front Physiol (2019) 10:522. doi: 10.3389/fphys.2019.00522

27. Chen B, Zhang D, Pollard JW. Progesterone regulation of the mammalian

ortholog of methylcitrate dehydratase (immune response gene 1) in the uterine

epithelium during implantation through the protein kinase c pathway. Mol

Endocrinol (2003) 17(11):2340–54. doi: 10.1210/me.2003-0207

8. Whitham M, Parker BL, Friedrichsen M, Hingst JR, Hjorth M, Hughes WE, et al.

Extracellular vesicles provide a means for tissue crosstalk during exercise. Cell Metab

(2018) 27(1):237–251.e4. doi: 10.1016/j.cmet.2017.12.001

28. Tsai YJ, Hao SP, Chen CL, Wu WB. Thromboxane A2 regulates CXCL1 and

CXCL8 chemokine expression in the nasal mucosa-derived fibroblasts of chronic

rhinosinusitis patients. PloS One (2016) 11(6):e0158438. doi: 10.1371/

journal.pone.0158438

9. Maeshige N, Langston PK, Yuan ZM, Kondo H, Fujino H. High-intensity

ultrasound irradiation promotes the release of extracellular vesicles from C2C12

myotubes. Ultrasonics (2021) 110:106243. doi: 10.1016/j.ultras.2020.106243

10. Fiuza-Luces C, Garatachea N, Berger NA, Lucia A. Exercise is the real polypill.

Physiol (Bethesda) (2013) 28(5):330–58. doi: 10.1152/physiol.00019.2013

29. Wang G, Huang W, Wang S, Wang J, Cui W, Zhang W, et al. Macrophagic

extracellular vesicle CXCL2 recruits and activates the neutrophil CXCR2/PKC/NOX4

axis in sepsis. J Immunol (2021) 207(8):2118–28. doi: 10.4049/jimmunol.2100229

11. Sano M, Tanaka T, Ohara H, Aso Y. Itaconic acid derivatives: Structure,

function, biosynthesis, and perspectives. Appl Microbiol Biotechnol (2020) 104

(21):9041–51. doi: 10.1007/s00253-020-10908-1

30. Horak M, Novak J, Bienertova-Vasku J. Muscle-specific microRNAs in skeletal

muscle development. Dev Biol (2016) 410(1):1–13. doi: 10.1016/j.ydbio.2015.12.013

12. Tallam A, Perumal TM, Antony PM, Jäger C, Fritz JV, Vallar L, et al. Gene

regulatory network inference of immunoresponsive gene 1 (IRG1) identifies interferon

regulatory factor 1 (IRF1) as its transcriptional regulator in mammalian macrophages.

PloS One (2016) 11(2):e0149050. doi: 10.1371/journal.pone.0149050

31. Xu T, Zhou Q, Che L, Das S, Wang L, Jiang J, et al. Circulating miR-21, miR-378,

and miR-940 increase in response to an acute exhaustive exercise in chronic heart

failure patients. Oncotarget (2016) 7(11):12414–25. doi: 10.18632/oncotarget.6966

32. Lin CC, Law BF, Hettick JM. Acute 4,4'-methylene diphenyl diisocyanate

exposure-mediated downregulation of miR-206-3p and miR-381-3p activates

inducible nitric oxide synthase transcription by targeting Calcineurin/NFAT

signaling in macrophages. Toxicol Sci (2020) 173(1):100–13. doi: 10.1093/toxsci/

kfz215

13. O'Neill LAJ, Artyomov MN. Itaconate: The poster child of metabolic

reprogramming in macrophage function. Nat Rev Immunol (2019) 19(5):273–81.

doi: 10.1038/s41577-019-0128-5

14. Hall CJ, Boyle RH, Astin JW, Flores MV, Oehlers SH, Sanderson LE, et al.

Immunoresponsive gene 1 augments bactericidal activity of macrophage-lineage cells

by regulating b-oxidation-dependent mitochondrial ROS production. Cell Metab

(2013) 18(2):265–78. doi: 10.1016/j.cmet.2013.06.018

33. Rückerl D, Jenkins SJ, Laqtom NN, Gallagher IJ, Sutherland TE, Duncan S, et al.

Induction of IL-4Ra-dependent microRNAs identifies PI3K/Akt signaling as essential

for IL-4-driven murine macrophage proliferation in vivo. Blood (2012) 120(11):2307–

16. doi: 10.1182/blood-2012-02-408252

15. Monsel A, Zhu YG, Gennai S, Hao Q, Hu S, Rouby JJ, et al. Therapeutic effects of

human mesenchymal stem cell-derived microvesicles in severe pneumonia in mice. Am

J Respir Crit Care Med (2015) 192(3):324–36. doi: 10.1164/rccm.201410-1765OC

34. Krist B, Florczyk U, Pietraszek-Gremplewicz K, Jó zkowicz A, Dulak J. The role

of miR-378a in metabolism, angiogenesis, and muscle biology. Int J Endocrinol (2015)

2015:281756. doi: 10.1155/2015/281756

16. Kowal J, Arras G, Colombo M, Jouve M, Morath JP, Primdal-Bengtson B, et al.

Proteomic comparison defines novel markers to characterize heterogeneous

populations of extracellular vesicle subtypes. Proc Natl Acad Sci USA (2016) 113(8):

E968–77. doi: 10.1073/pnas.1521230113

35. Wang S, Wen X, Han XR, Wang YJ, Shen M, Fan SH, et al. MicroRNA-30d

preserves pancreatic islet b-cell function through negative regulation of the JNK

signaling pathway via SOCS3 in mice with streptozotocin-induced diabetes mellitus.

J Cell Physiol (2018) 233(9):7343–55. doi: 10.1002/jcp.26569

17. Rao X, Huang X, Zhou Z, Lin X. An improvement of the 2ˆ(-delta delta CT)

method for quantitative real-time polymerase chain reaction data analysis. Biostat

Bioinforma Biomath (2013) 3(3):71–85.

36. Lin X, Yu S, Ren P, Sun X, Jin M. Human microRNA-30 inhibits influenza virus

infection by suppressing the expression of SOCS1, SOCS3, and NEDD4. Cell Microbiol

(2020) 22(5):e13150. doi: 10.1111/cmi.13150

18. Kato H, Izumi Y, Hasunuma T, Matsuda F, Kondo A. Widely targeted metabolic

profiling analysis of yeast central metabolites. J Biosci Bioeng (2012) 113(5):665–73. doi:

10.1016/j.jbiosc.2011.12.013

19. Kang H. Sample size determination and power analysis using the G*Power

software. J Educ Eval Health Prof (2021) 18:17. doi: 10.3352/jeehp.2021.18.17

37. Li N, Qin JF, Han X, Jin FJ, Zhang JH, Lan L, et al. miR-21a negatively

modulates tumor suppressor genes PTEN and miR-200c and further promotes the

transformation of M2 macrophages. Immunol Cell Biol (2018) 96(1):68–80. doi:

10.1111/imcb.1016

20. Biller SJ, Lundeen RA, Hmelo LR, Becker KW, Arellano AA, Dooley K, et al.

Prochlorococcus extracellular vesicles: Molecular composition and adsorption to diverse

microbes. Environ Microbiol (2022) 24(1):420–35. doi: 10.1111/1462-2920.15834

38. Hui S, Ghergurovich JM, Morscher RJ, Jang C, Teng X, Lu W, et al. Glucose

feeds the TCA cycle via circulating lactate. Nature (2017) 551(7678):115–8. doi:

10.1038/nature24057

21. Möller B, Villiger PM. Inhibition of IL-1, IL-6, and TNF-alpha in immunemediated inflammatory diseases. Springer Semin Immunopathol (2006) 27(4):391–408.

doi: 10.1007/s00281-006-0012-9

39. Noe JT, Mitchell RA. Tricarboxylic acid cycle metabolites in the control of

macrophage activation and effector phenotypes. J Leukoc Biol (2019) 106(2):359–67.

doi: 10.1002/JLB.3RU1218-496R

Frontiers in Immunology

12

frontiersin.org

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る