リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Development of macrophage-targeted therapy using peptide/protein-loaded extracellular vesicles」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Development of macrophage-targeted therapy using peptide/protein-loaded extracellular vesicles

Takenaka, Misako 京都大学 DOI:10.14989/doctor.k24549

2023.03.23

概要

In inflammatory diseases, M1-polarlized macrophages largely contribute to the onset and
progression of the diseases by producing pro-inflammatory mediators [10]. The anti-inflammatory
strategy of suppressing these mediators, such as IL-6 or TNFα, has already been applied [11,12]
However, considering the critical role of macrophages, an approach that directly suppresses M1
activation and promotes M2 activation of macrophages could be a more efficient treatment against
chronic inflammatory diseases, in which various pro-inflammatory mediators are inhibited at once and
wound healing is accelerated by anti-inflammatory mediators secreted by M2 macrophages [13].
Interleukin-4 (IL4), a Th2-derived cytokine, can induce M2 macrophages [14]. Owing to its
immunomodulatory activity, studies have been carried out to develop an anti-inflammatory therapy
utilizing IL4 [15,16]. However, there are still problems in the development of IL4 therapy, such as
insufficient anti-inflammatory effects [17–20] and undesirable side effects [21–24], due to the low
delivery efficiency to target cells, macrophages. Since sEVs are efficiently recognized and taken up
by macrophages through the negative charges of their membrane, derived from phosphatidylserine
(PS) [6,7], it was expected that sEV would be a promising IL4 delivery carrier to macrophages.
Moreover, the localization of the IL4 receptor (IL4R) to the early endosome (EE) and subsequent
stabilization of the IL4R heterodimer in the EE contribute to full activation and duration of IL4
signaling [25,26]. As sEVs are taken up by macrophages mostly through endocytosis [27], I assumed
that IL4 loaded sEVs promote the localization of IL4R into EE, followed by amplification of IL4
signal transduction.
Therefore, I hypothesized that IL4 loaded sEVs could be a potent therapeutic agent for
inflammatory diseases, which improve the target-cell specificity and bioactivity of IL4. In this chapter,
I prepared IL4 loaded sEVs (IL4-sEVs) by constructing plasmid DNA expressing a fusion protein of
IL4 and sEV-tropic protein, lactadherin (LA), and isolating from HEK293 cells transfected with the
plasmid DNA. Subsequently, anti-inflammatory effects were evaluated using both M1-polarlized
macrophage cell line and animal model of rheumatoid arthritis, a serious inflammatory disease. ...

この論文で使われている画像

参考文献

[1]

P. Krzyszczyk, R. Schloss, A. Palmer, F. Berthiaume, The role of macrophages in acute

and chronic wound healing and interventions to promote pro-wound healing phenotypes,

Front. Physiol. 9 (2018) 1–22. https://doi.org/10.3389/fphys.2018.00419.

[2]

E. Woith, G. Fuhrmann, M.F. Melzig, Molecular Sciences Extracellular VesiclesConnecting Kingdoms, Int. J. Mol. Sci. 20 (2019) 5695.

[3]

M. Tkach, C. Théry, Communication by Extracellular Vesicles: Where We Are and

Where We Need to Go, Cell. 164 (2016) 1226–1232.

https://doi.org/10.1016/j.cell.2016.01.043.

[4]

J. Kowal, M. Tkach, C. Théry, Biogenesis and secretion of exosomes, Curr. Opin. Cell

Biol. 29 (2014) 116–125. https://doi.org/10.1016/j.ceb.2014.05.004.

[5]

G. Van Niel, G. D’Angelo, G. Raposo, Shedding light on the cell biology of extracellular

vesicles, Nat. Rev. Mol. Cell Biol. 19 (2018) 213–228.

https://doi.org/10.1038/nrm.2017.125.

[6]

T. Imai, Y. Takahashi, M. Nishikawa, K. Kato, M. Morishita, T. Yamashita, A.

Matsumoto, C. Charoenviriyakul, Y. Takakura, Macrophage-dependent clearance of

systemically administered B16BL6-derived exosomes from the blood circulation in

mice, J. Extracell. Vesicles. 4 (2015) 1–8. https://doi.org/10.3402/jev.v4.26238.

[7]

A. Matsumoto, Y. Takahashi, M. Nishikawa, K. Sano, M. Morishita, C.

Charoenviriyakul, H. Saji, Y. Takakura, Role of Phosphatidylserine-Derived Negative

Surface Charges in the Recognition and Uptake of Intravenously Injected B16BL6Derived Exosomes by Macrophages, J. Pharm. Sci. 106 (2017) 168–175.

https://doi.org/10.1016/j.xphs.2016.07.022.

[8]

D.B. Nguyen, T.B. Thuy Ly, M.C. Wesseling, M. Hittinger, A. Torge, A. Devitt, Y.

Perrie, I. Bernhardt, Characterization of microvesicles released from human red blood

cells, Cell. Physiol. Biochem. 38 (2016) 1085–1099. https://doi.org/10.1159/000443059.

[9]

M. Xu, Q. Yang, X. Sun, Y. Wang, Recent Advancements in the Loading and

Modification of Therapeutic Exosomes, Front. Bioeng. Biotechnol. 8 (2020).

https://doi.org/10.3389/fbioe.2020.586130.

[10]

A. Mantovani, A. Sica, S. Sozzani, P. Allavena, A. Vecchi, M. Locati, The chemokine

system in diverse forms of macrophage activation and polarization, Trends Immunol. 25

(2004) 677–686. https://doi.org/10.1016/j.it.2004.09.015.

47

[11]

J.F. Rossi, Z.Y. Lu, M. Jourdan, B. Klein, Interleukin-6 as a therapeutic target, Clin.

Cancer Res. 21 (2015) 1248–1257. https://doi.org/10.1158/1078-0432.CCR-14-2291.

[12]

C. Monaco, J. Nanchahal, P. Taylor, M. Feldmann, Anti-TNF therapy: Past, present and

future, Int. Immunol. 27 (2015) 55–62. https://doi.org/10.1093/intimm/dxu102.

[13]

W. Ohashi, K. Hattori, Y. Hattori, Control of macrophage dynamics as a potential

therapeutic approach for clinical disorders involving chronic inflammation, J.

Pharmacol. Exp. Ther. 354 (2015) 240–250. https://doi.org/10.1124/jpet.115.225540.

[14]

I.G. Luzina, A.D. Keegan, N.M. Heller, G.A.W. Rook, T. Shea-Donohue, S.P. Atamas,

Regulation of inflammation by interleukin-4: a review of “alternatives,” J. Leukoc. Biol.

92 (2012) 753–764. https://doi.org/10.1189/jlb.0412214.

[15]

J.B. Allen, H.L. Wong, G.L. Costa, M.J. Bienkowski, S.M. Wahl, Suppression of

monocyte function and differential regulation of IL-1 and IL-1ra by IL-4 contribute to

resolution of experimental arthritis., J. Immunol. 151 (1993) 4344–51.

http://www.ncbi.nlm.nih.gov/pubmed/8409406.

[16]

K. Ghoreschi, P. Thomas, S. Breit, M. Dugas, R. Mailhammer, W. Van Eden, R. Van der

Zee, T. Biedermann, J. Prinz, M. Mack, U. Mrowietz, E. Christophers, D. Schlöndorff,

G. Plewig, C.A. Sander, M. Rocken, Interleukin-4 therapy of psoriasis induces Th2

responses and improves human autoimmune disease, Nat. Med. 9 (2003) 40–46.

https://doi.org/10.1038/nm804.

[17]

E. Lubberts, L.A.B. Joosten, M. Chabaud, L. Van Den Bersselaar, B. Oppers, C.J.J.

Coenen-De Roo, C.D. Richards, P. Miossec, W.B. Van Den Berg, IL-4 gene therapy for

collagen arthritis suppresses synovial IL-17 and osteoprotegerin ligand and prevents

bone erosion, J. Clin. Invest. 105 (2000) 1697–1710. https://doi.org/10.1172/JCI7739.

[18]

L.A.B. Joosten, E. Lubberts, P. Durez, M.M.A. Helsen, M.J.M. Jacobs, M. Goldman,

W.B. Van den Berg, Role of interleukin-4 and interleukin-10 in murine collagen-induced

arthritis: Protective effect of interleukin-4 and interleukin-10 treatment on cartilage

destruction, Arthritis Rheum. 40 (1997) 249–260.

https://doi.org/10.1002/art.1780400209.

[19]

L.A.B. Joosten, E. Lubberts, M.M.A. Helsen, T. Saxne, C.J.J. Coenen-De Roo, D.

Heinegård, W.B. Van Den Berg, Protection against cartilage and bone destruction by

systemic interleukin-4 treatment in established murine type II collagen-induced arthritis,

Arthritis Res. 1 (1999) 81–91. https://doi.org/10.1186/ar14.

48

[20]

E. Lubberts, L.A. Joosten, L. van Den Bersselaar, M.M. Helsen, A.C. Bakker, J.B. van

Meurs, F.L. Graham, C.D. Richards, W.B. van Den Berg, Adenoviral vector-mediated

overexpression of IL-4 in the knee joint of mice with collagen-induced arthritis prevents

cartilage destruction., J. Immunol. 163 (1999) 4546–56.

http://www.ncbi.nlm.nih.gov/pubmed/10510398.

[21]

J.Prendivill; N. Thatcher; M. Lind; R. McIntosh; A. Ghosh; P. Stern; D. Crowther,

Recombinant human interleukin-4 (rhu IL-4) administered by the intravenous and

subcutaneous routes in patients with advanced cancer—A phase I toxicity study and

pharmacokinetic analysis, Eur. J. Cancer. 29 (1993) 1700–1707.

[22]

J.A. Sosmon; S.G. Fisher; C.Kwfer; R.I.Fisher; T.M.Ellis, A phase I trial of continuous

infusion interleukin-4 (IL-4) alone and following interleukin-2 (IL2) in cancer patients,

Ann. Oncol. (1994) 447–452.

[23]

J. Lundin, E. Kimby, L. Bergmann, T. Karakas, H. Mellstedt, A. Österborg, Interleukin 4

therapy for patients with chronic lymphocytic leukaemia: A phase I/II study, Br. J.

Haematol. 112 (2001) 155–160. https://doi.org/10.1046/j.1365-2141.2001.02525.x.

[24]

P. Dasgupta, A.D. Keegan, Contribution of alternatively activated macrophages to

allergic lung inflammation: A tale of mice and men, J. Innate Immun. 4 (2012) 478–488.

https://doi.org/10.1159/000336025.

[25]

H. Gandhi, R. Worch, K. Kurgonaite, M. Hintersteiner, P. Schwille, C. Bökel, T.

Weidemann, Dynamics and interaction of Interleukin-4 receptor subunits in living cells,

Biophys. J. 107 (2014) 2515–2527. https://doi.org/10.1016/j.bpj.2014.07.077.

[26]

K. Kurgonaite, H. Gandhi, T. Kurth, S. Pautot, P. Schwille, T. Weidemann, C. Bökel,

Essential role of endocytosis for interleukin-4-receptor-mediated JAK/STAT signalling,

J. Cell Sci. 128 (2015) 3781–3795. https://doi.org/10.1242/jcs.170969.

[27]

L.A. Mulcahy, R.C. Pink, D.R.F. Carter, Routes and mechanisms of extracellular vesicle

uptake, J. Extracell. Vesicles. 3 (2014) 1–14. https://doi.org/10.3402/jev.v3.24641.

[28]

K. Umemura, S. Ohtsuki, M. Nagaoka, K. Kusamori, T. Inoue, Y. Takahashi, Y.

Takakura, M. Nishikawa, Critical contribution of macrophage scavenger receptor 1 to

the uptake of nanostructured DNA by immune cells, Nanomedicine. (2021).

https://doi.org/10.1016/j.nano.2021.102386.

[29]

Y. Takahashi, M. Nishikawa, H. Shinotsuka, Y. Matsui, S. Ohara, T. Imai, Y. Takakura,

Visualization and in vivo tracking of the exosomes of murine melanoma B16-BL6 cells

49

in mice after intravenous injection, J. Biotechnol. 165 (2013) 77–84.

https://doi.org/10.1016/j.jbiotec.2013.03.013.

[30]

C. Charoenviriyakul, Y. Takahashi, M. Morishita, M. Nishikawa, Y. Takakura, Role of

Extracellular Vesicle Surface Proteins in the Pharmacokinetics of Extracellular Vesicles,

Mol. Pharm. 15 (2018) 1073–1080. https://doi.org/10.1021/acs.molpharmaceut.7b00950.

[31]

M. Morishita, Y. Takahashi, A. Matsumoto, M. Nishikawa, Y. Takakura, Exosomebased tumor antigens–adjuvant co-delivery utilizing genetically engineered tumor cellderived exosomes with immunostimulatory CpG DNA, Biomaterials. 111 (2016) 55–65.

https://doi.org/10.1016/j.biomaterials.2016.09.031.

[32]

M. Morishita, Y. Takahashi, A. Matsumoto, M. Nishikawa, Y. Takakura, Exosomebased tumor antigens–adjuvant co-delivery utilizing genetically engineered tumor cellderived exosomes with immunostimulatory CpG DNA, Biomaterials. 111 (2016) 55–65.

https://doi.org/10.1016/j.biomaterials.2016.09.031.

[33]

D.G. You, G. Saravanakumar, S. Son, H.S. Han, R. Heo, K. Kim, I.C. Kwon, J.Y. Lee,

J.H. Park, Dextran sulfate-coated superparamagnetic iron oxide nanoparticles as a

contrast agent for atherosclerosis imaging, Carbohydr. Polym. 101 (2014) 1225–1233.

https://doi.org/10.1016/j.carbpol.2013.10.068.

[34]

D.C. Watson, D. Bayik, A. Srivatsan, C. Bergamaschi, A. Valentin, G. Niu, J. Bear, M.

Monninger, M. Sun, A. Morales-Kastresana, J.C. Jones, B.K. Felber, X. Chen, I. Gursel,

G.N. Pavlakis, Efficient production and enhanced tumor delivery of engineered

extracellular vesicles, Biomaterials. 105 (2016) 195–205.

https://doi.org/10.1016/j.biomaterials.2016.07.003.

[35]

D.B. Thompson, R. Villaseñor, B.M. Dorr, M. Zerial, D.R. Liu, Cellular uptake

mechanisms and endosomal trafficking of supercharged proteins, Chem. Biol. 19 (2012)

831–843. https://doi.org/10.1016/j.chembiol.2012.06.014.

[36]

J. Li, H.C. Hsu, J.D. Mountz, Managing macrophages in rheumatoid arthritis by reform

or removal, Curr. Rheumatol. Rep. 14 (2012) 445–454. https://doi.org/10.1007/s11926012-0272-4.

[37]

M. Mendt, K. Rezvani, E. Shpall, Mesenchymal stem cell-derived exosomes for clinical

use, Bone Marrow Transplant. 54 (2019) 789–792. https://doi.org/10.1038/s41409-0190616-z.

[38]

Hui Zhao; Qianwen; Zhenzhen Pan; Yang Bai; Zequn Li; Huiying Zhang; Qiu Zhang;

50

Chun Guo; Lining Zhang; Qun Wang, Exosomes From Adipose-Derived Stem Cells

Attenuate Adipose Inflammation and Obesity Through Polarizing M2 Macrophages and

Beiging in White Adipose Tissue, 67 (n.d.) 235–247.

[39]

H. Kim, S.Y. Wang, G. Kwak, Y. Yang, I.C. Kwon, S.H. Kim, Exosome-Guided

Phenotypic Switch of M1 to M2 Macrophages for Cutaneous Wound Healing, Adv. Sci.

6 (2019). https://doi.org/10.1002/advs.201900513.

[40]

Y. Yang, X. Hu, L. Cheng, W. Tang, W. Zhao, Y. Yang, J. Zuo, Periplocoside A

ameliorated type II collagen-induced arthritis in mice via regulation of the balance of

Th17/Treg cells, Int. Immunopharmacol. 44 (2017) 43–52.

https://doi.org/10.1016/j.intimp.2016.12.013.

[41]

S. Gordon, Alternative activation of macrophages, Nat. Rev. Immunol. 3 (2003) 23–35.

https://doi.org/10.1038/nri978.

[42]

R.L. Gieseck, M.S. Wilson, T.A. Wynn, Type 2 immunity in tissue repair and fibrosis,

Nat. Rev. Immunol. 18 (2018) 62–76. https://doi.org/10.1038/nri.2017.90.

[43]

N.J. Horwood, Macrophage Polarization and Bone Formation: A review, Clin. Rev.

Allergy Immunol. 51 (2016) 79–86. https://doi.org/10.1007/s12016-015-8519-2.

[44]

S. Chen, H. Liang, Y. Ji, H. Kou, C. Zhang, G. Shang, C. Shang, Z. Song, L. Yang, L.

Liu, Y. Wang, H. Liu, Curcumin Modulates the Crosstalk Between Macrophages and

Bone Mesenchymal Stem Cells to Ameliorate Osteogenesis, Front. Cell Dev. Biol. 9

(2021) 1–13. https://doi.org/10.3389/fcell.2021.634650.

[45]

C. Guder, S. Gravius, C. Burger, D.C. Wirtz, F.A. Schildberg, Osteoimmunology: A

Current Update of the Interplay Between Bone and the Immune System, Front.

Immunol. 11 (2020) 1–19. https://doi.org/10.3389/fimmu.2020.00058.

[46]

R.G. Baker, M.S. Hayden, S. Ghosh, NF-κB, inflammation, and metabolic disease, Cell

Metab. 13 (2011) 11–22. https://doi.org/10.1016/j.cmet.2010.12.008.

[47]

P. Viatour, M.P. Merville, V. Bours, A. Chariot, Phosphorylation of NF-κB and IκB

proteins: Implications in cancer and inflammation, Trends Biochem. Sci. 30 (2005) 43–

52. https://doi.org/10.1016/j.tibs.2004.11.009.

[48]

P.P. Tak, G.S. Firestein, NF-κB: A key role in inflammatory diseases, J. Clin. Invest.

107 (2001) 7–11. https://doi.org/10.1172/JCI11830.

[49]

N. Wang, H. Liang, K. Zen, Molecular mechanisms that influence the macrophage M1M2 polarization balance, Front. Immunol. 5 (2014) 1–9.

51

https://doi.org/10.3389/fimmu.2014.00614.

[50]

M.J. May, F. D’Acquisto, L.A. Madge, J. Glockner, J.S. Pober, S. Ghosh, Selective

inhibition of NF-κB activation by a peptide that blocks the interaction of NEMO with

the IκB kinase complex, Science (80-. ). 289 (2000) 1550–1554.

https://doi.org/10.1126/science.289.5484.1550.

[51]

M.J. May, R.B. Marienfeld, S. Ghosh, Characterization of the IκB-kinase NEMO

binding domain, J. Biol. Chem. 277 (2002) 45992–46000.

https://doi.org/10.1074/jbc.M206494200.

[52]

S. Ghosh, M. Karin, Missing pieces in the NF-κB puzzle, Cell. 109 (2002) 81–96.

https://doi.org/10.1016/S0092-8674(02)00703-1.

[53]

I. Stancovski, D. Baltimore, NF-κB Activation: The IκB Kinase Revealed?, Cell. 91

(1997) 299–302.

[54]

T. Huxford, G. Ghosh, A structural guide to proteins of the NF-kappaB signaling

module., Cold Spring Harb. Perspect. Biol. 1 (2009) 1–16.

https://doi.org/10.1101/cshperspect.a000075.

[55]

M. Karin, M. Delhase, The IκB kinase (IKK) and NF-κB: Key elements of

proinflammatory signalling, Semin. Immunol. 12 (2000) 85–98.

https://doi.org/10.1006/smim.2000.0210.

[56]

S. Dai, T. Hirayama, S. Abbas, Y. Abu-Amer, The IκB kinase (IKK) inhibitor, NEMObinding domain peptide, blocks osteoclastogenesis and bone erosion in inflammatory

arthritis, J. Biol. Chem. 279 (2004) 37219–37222.

https://doi.org/10.1074/jbc.C400258200.

[57]

S.W. Tas, M.J. Vervoordeldonk, N. Hajji, M.J. May, S. Ghosh, P.P. Tak, Local

treatment with the selective IκB kinase β inhibitor NEMO-binding domain peptide

ameliorates synovial inflammation, Arthritis Res. Ther. 8 (2006) 1–9.

https://doi.org/10.1186/ar1958.

[58]

W. Shibata, S. Maeda, Y. Hikiba, A. Yanai, T. Ohmae, K. Sakamoto, H. Nakagawa, K.

Ogura, M. Omata, Cutting Edge: The IκB Kinase (IKK) Inhibitor, NEMO-Binding

Domain Peptide, Blocks Inflammatory Injury in Murine Colitis, J. Immunol. 179 (2007)

2681–2685. https://doi.org/10.4049/jimmunol.179.5.2681.

[59]

D. Sun, Z. Xiaoying, X. Xiang, Y. Liu, S. Zhang, C. Liu, S. Barnes, W. Grizzle, D.

Miller, H.-G. Zhang, A Novel Nanoparticle Drug Delivery System: The Anti-

52

inflammatory Activity of Curcumin Is Enhanced When Encapsulated in Exosomes, Mol.

Ther. 18 (2010) 1606–1614.

[60]

M. Haney, N. Klyachko, Y. Zhao, R. Gupta, E. Plotnikova, Z. He, T. Patel, A. Piroyan,

M. Sokolsky, A. Kabanov, E. Batrakova, Exosomes as Drug Delivery Vehicles for

Parkinson’s Disease Therapy, J. Control. Release. 207 (2015) 18–30.

https://doi.org/10.1016/j.physbeh.2017.03.040.

[61]

D.E. Murphy, O.G. de Jong, M. Brouwer, M.J. Wood, G. Lavieu, R.M. Schiffelers, P.

Vader, Extracellular vesicle-based therapeutics: natural versus engineered targeting and

trafficking, Exp. Mol. Med. 51 (2019). https://doi.org/10.1038/s12276-019-0223-5.

[62]

Y. Arima, W. Liu, Y. Takahashi, M. Nishikawa, Y. Takakura, Effects of Localization of

Antigen Proteins in Antigen-Loaded Exosomes on Efficiency of Antigen Presentation,

Mol. Pharm. 16 (2019) 2309–2314. https://doi.org/10.1021/acs.molpharmaceut.8b01093.

[63]

C. Charoenviriyakul, Y. Takahashi, M. Morishita, M. Nishikawa, Y. Takakura, Role of

Extracellular Vesicle Surface Proteins in the Pharmacokinetics of Extracellular Vesicles,

Mol. Pharm. 15 (2018) 1073–1080. https://doi.org/10.1021/acs.molpharmaceut.7b00950.

[64]

Y. Hayakawa, S. Maeda, H. Nakagawa, Y. Hikiba, W. Shibata, K. Sakamoto, A. Yanai,

Y. Hirata, K. Ogura, S. Muto, A. Itai, M. Omata, Effectiveness of IκB kinase inhibitors

in murine colitis-associated tumorigenesis, J. Gastroenterol. 44 (2009) 935–943.

https://doi.org/10.1007/s00535-009-0098-7.

[65]

R.S. Jope, C.J. Yuskaitis, E. Beurel, Glycogen Synthase Kinase-3 (GSK3):

Inflammation, Diseases, and Therapeutics, Neurochem. Res. 32 (2007) 577–595.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1970866/pdf/nihms24923.pdf%0Ahttp:/

/www.ncbi.nlm.nih.gov/pubmed/16944320.

[66]

M. Maqbool, M. Mobashir, N. Hoda, Pivotal role of glycogen synthase kinase-3: A

therapeutic target for Alzheimer’s disease, Eur. J. Med. Chem. 107 (2016) 63–81.

https://doi.org/10.1016/j.ejmech.2015.10.018.

[67]

M.A. Bogoyevitch, I. Boehm, A. Oakley, A.J. Ketterman, R.K. Barr, Targeting the JNK

MAPK cascade for inhibition: Basic science and therapeutic potential, Biochim.

Biophys. Acta - Proteins Proteomics. 1697 (2004) 89–101.

https://doi.org/10.1016/j.bbapap.2003.11.016.

[68]

B. Hu, L. Xu, Y. Li, X. Bai, M. Xing, Q. Cao, H. Liang, S. Song, A. Ji, A Peptide

Inhibitor of Macrophage Migration in Atherosclerosis Purified From the Leech

53

Whitmania Pigra, J. Ethnopharmacol. (2020). https://doi.org/10.1016/j.jep.2020.112723.

[69]

M.N. Rahimi, L.K. Buckton, S.S. Zaiter, J. Kho, V. Chan, A. Guo, J. Konesan, S. Kwon,

L.K.O. Lam, M.F. Lawler, M. Leong, G.D. Moldovan, D.A. Neale, G. Thornton, S.R.

McAlpine, Synthesis and Structure-Activity Relationships of Inhibitors That Target the

C-Terminal MEEVD on Heat Shock Protein 90, ACS Med. Chem. Lett. 9 (2018) 73–77.

https://doi.org/10.1021/acsmedchemlett.7b00310.

[70]

M.N. Rahimi, S.R. McAlpine, Protein-protein inhibitor designed de novo to target the

MEEVD region on the C-terminus of Hsp90 and block co-chaperone activity, Chem.

Commun. 55 (2019) 846–849. https://doi.org/10.1039/C8CC07576J.

[71]

S. Sueda, Y.Q. Li, H. Kondo, Y. Kawarabayasi, Substrate specificity of archaeon

Sulfolobus tokodaii biotin protein ligase, Biochem. Biophys. Res. Commun. 344 (2006)

155–159. https://doi.org/10.1016/j.bbrc.2006.03.118.

[72]

S. Sueda, S. Yoneda, H. Hayashi, Site-Specific Labeling of Proteins by Using Biotin

Protein Ligase Conjugated with Fluorophores, ChemBioChem. 12 (2011) 1367–1375.

https://doi.org/10.1002/cbic.201000738.

[73]

S. Suman, P.K. Sharma, G. Rai, S. Mishra, D. Arora, P. Gupta, Y. Shukla, Current

perspectives of molecular pathways involved in chronic inflammation-mediated breast

cancer, Biochem. Biophys. Res. Commun. 472 (2016) 401–409.

https://doi.org/10.1016/j.bbrc.2015.10.133.

[74]

Q. Wu, W. Zhou, S. Yin, Y. Zhou, T. Chen, J. Qian, R. Su, L. Hong, H. Lu, F. Zhang, H.

Xie, L. Zhou, S. Zheng, Blocking Triggering Receptor Expressed on Myeloid Cells-1Positive Tumor-Associated Macrophages Induced by Hypoxia Reverses

Immunosuppression and Anti-Programmed Cell Death Ligand 1 Resistance in Liver

Cancer, Hepatology. 70 (2019) 198–214. https://doi.org/10.1002/hep.30593.

[75]

A.N. Chamseddine, T. Assi, O. Mir, S. Chouaib, Modulating tumor-associated

macrophages to enhance the efficacy of immune checkpoint inhibitors: A TAM-pting

approach, Pharmacol. Ther. 231 (2022) 107986.

https://doi.org/10.1016/j.pharmthera.2021.107986.

[76]

D.G. DeNardo, B. Ruffell, Macrophages as regulators of tumour immunity and

immunotherapy, Nat. Rev. Immunol. 19 (2019) 369–382.

https://doi.org/10.1038/s41577-019-0127-6.

[77]

Y.R. Na, J.W. Kwon, D.Y. Kim, H. Chung, J. Song, D. Jung, H. Quan, D. Kim, J.S.

54

Kim, Y.W. Ju, W. Han, H.S. Ryu, Y.S. Lee, J.J. Hong, S.H. Seok, Protein Kinase A

Catalytic Subunit Is a Molecular Switch that Promotes the Pro-tumoral Function of

Macrophages, Cell Rep. 31 (2020) 107643.

https://doi.org/10.1016/j.celrep.2020.107643.

[78]

K. Takaishi, Y. Komohara, H. Tashiro, H. Ohtake, T. Nakagawa, H. Katabuchi, M.

Takeya, Involvement of M2-polarized macrophages in the ascites from advanced

epithelial ovarian carcinoma in tumor progression via Stat3 activation, Cancer Sci. 101

(2010) 2128–2136. https://doi.org/10.1111/j.1349-7006.2010.01652.x.

[79]

C. Liu, P. Ke, J. Zhang, X. Zhang, X. Chen, Protein Kinase Inhibitor Peptide as a Tool to

Specifically Inhibit Protein Kinase A, Front. Physiol. 11 (2020).

https://doi.org/10.3389/fphys.2020.574030.

[80]

U. Bharadwaj, M.M. Kasembeli, D.J. Tweardy, STAT3 Inhibitors in Cancer: A

Comprehensive Update, 2016. https://doi.org/10.1007/978-3-319-42949-6_5.

[81]

N. Takiguchi, Y. Takahashi, M. Nishikawa, Y. Matsui, Y. Fukuhara, D. Oushiki, K.

Kiyose, K. Hanaoka, T. Nagano, Y. Takakura, Positive correlation between the

generation of reactive oxygen species and activation/reactivation of transgene expression

after hydrodynamic injections into mice, Pharm. Res. 28 (2011) 702–711.

https://doi.org/10.1007/s11095-010-0331-3.

55

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る