リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Metabolic engineering of the l-serine biosynthetic pathway improves glutathione production in Saccharomyces cerevisiae」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Metabolic engineering of the l-serine biosynthetic pathway improves glutathione production in Saccharomyces cerevisiae

Kobayashi, Jyumpei Sasaki, Daisuke Hara, Kiyotaka Y. Hasunuma, Tomohisa Kondo, Akihiko 神戸大学

2022.08.06

概要

Background Glutathione is a valuable tri-peptide that is industrially produced by fermentation using the yeast Saccharomyces cerevisiae, and is widely used in the pharmaceutical, food, and cosmetic industries. It has been reported that addition of l-serine (l-Ser) is effective at increasing the intracellular glutathione content because l-Ser is the common precursor of l-cysteine (l-Cys) and glycine (Gly) which are substrates for glutathione biosynthesis. Therefore, we tried to enhance the l-Ser biosynthetic pathway in S. cerevisiae for improved glutathione production. Results The volumetric glutathione production of recombinant strains individually overexpressing SER2, SER1, SER3, and SER33 involved in l-Ser biosynthesis at 48 h cultivation was increased 1.3, 1.4, 1.9, and 1.9-fold, respectively, compared with that of the host GCI strain, which overexpresses genes involved in glutathione biosynthesis. We further examined simultaneous overexpression of SHM2 and/or CYS4 genes involved in Gly and l-Cys biosynthesis, respectively, using recombinant GCI strain overexpressing SER3 and SER33 as hosts. As a result, GCI overexpressing SER3, SHM2, and CYS4 showed the highest volumetric glutathione production (64.0 ± 4.9 mg/L) at 48 h cultivation, and this value is about 2.5-fold higher than that of the control strain. Conclusions This study first revealed that engineering of l-Ser and Gly biosynthetic pathway are useful strategies for fermentative glutathione production by S. cerevisiase.

この論文で使われている画像

参考文献

1. Meister A, Anderson ME. Glutathione. Annu Rev Biochem. 1983;52:711–60.

2. Flohé L. The glutathione peroxidase reaction: molecular basis of the antioxidant function of selenium in mammals. Curr Top Cell Regul. 1985;27:473–8.

3. Dröge W, Breitkreutz R. Glutathione and immune function. Proc Nutr Soc. 2000;59:595–600.

4. Penninckx MJ. A short review on the role of glutathione in the response of yeasts to nutritional, environmental, and oxidative stresses. Enzyme Microb Technol. 2000;26:737–42.

5. Vartanyan LS, Gurevich S, Kozachenko AI, Nagler LG, Lozovskaya EL, Burlakova EB. Changes in superoxide production rate and in superoxide dismutase and glutathione peroxidase activities in subcellular organelles in mouse liver under exposure to low doses of low-intensity radiation. Biochem (Mosc). 2000;65:442–6.

6. Ray S, Watkins DN, Misso NL, Thompson PJ. Oxidant stress induces gamma-glutamylcysteine synthetase and glutathione synthe-sis in human bronchial epithelial NCI-H292 cells. Clin Exp Allergy. 2002;32:571–7.

7. Rolseth V, Djurhuus R, Svardal AM. Additive toxicity of limonene and 50% oxygen and the role of glutathione in detoxification in human lung cells. Toxicology. 2002;170:75–88.

8. Singh RJ. Glutathione: a marker and antioxidant for aging. J Lab Clin Med. 2002;140:380–1.

9. Li Y, Wei G, Chen J. Glutathione: a review on biotechnological production. Appl Microbiol Biotechnol. 2004;66:233–42.

10. Arjinpathana N, Asawanonda P. Glutathione as an oral whitening agent: a randomized, double-blind, placebo-controlled study. J Dermatolog Treat. 2012;23:97–102.

11. Hara KY, Kiriyama K, Inagaki A, Nakayama H, Kondo A. Improvement of glutathione production by metabolic engineering the sulfate assimila- tion pathway of Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2011;94:1313–9.

12. Kiriyama K, Hara KY, Kondo A. Oxidized glutathione fermentation using Saccharomyces cerevisiae engineered for glutathione metabolism. Appl Microbiol Biotechnol. 2013;97:7399–404.

13. Hara KY, Aoki N, Kobayashi J, Kiriyama K, Nishida K, Araki M, Kondo A. Improvement of oxidized glutathione fermentation by thiol redox metabolism engineering in Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2015;99:9771–8.

14. Kobayashi J, Sasaki D, Hara KY, Hasunuma T, Kondo A. Enzymatic improve- ment of mitochondrial thiol oxidase Erv1 for oxidized glutathione fermentation by Saccharomyces cerevisiae. Microb Cell Fact. 2017;16:44.

15. Kobayashi J, Sasaki D, Bamba T, Hasunuma T, Kondo A. Sustainable production of glutathione from lignocellulose-derived sugars using engineered Saccharomyces cerevisiae. Appl microbio biotechnol. 2019;103:1243–54.

16. Alfafara CG, Kanda A, Shioi T, Shimizu H, Shioya S, Suga K. Effect of amino acids on glutathione production by Saccharomyces cerevisiae. Appl Micro- biol Biotechnol. 1992;36:538–40.

17. Wen S, Zhang T, Tan T. Utilization of amino acids to enhance glu- tathione production in Saccharomyces cerevisiae. Enz Microbial Technol. 2004;35:501–7.

18. Albers E, Laize V, Blomberg A, Hohmann S, Gustafsson L. Ser3p (Yer081wp) and Ser33p (Yil074cp) are phosphoglycerate dehydroge- nases in Saccharomyces cerevisiae. J Biol Chem. 2003;278:10264–72.

19. Majtan T, Pey AL, Fernández R, Fernández JA, Martínez-Cruz LA, Kraus JP. Domain organization, catalysis and regulation of eukaryotic cystathionine beta-synthases. PLoS ONE. 2014;9: e105290.

20. Cha J, Park J, Jeon B, Lee Y, Cho Y. Optimal fermentation conditions for enhanced glutathione production by Saccharomyces cerevisiae FF-8. J Microbiol. 2004;42:51–5.

21. Shang F, Wang Z, Tan T. High-cell-density cultivation for co-production of ergosterol and reduced glutathione by Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2008;77:1233–40.

22. Nisamedtinov I, Kevvai K, Orumets K, Rautio JJ, Paalme T. Glutathione accumulation in ethanol-stat fed-batch culture of Saccharomyces cerevisiae with a switch to cysteine feeding. Appl Microbiol Biotechnol. 2010;87:175–83.

23. Schmacht M, Lorenz E, Stahl U, Senz M. Medium optimization based on yeast’s elemental composition for glutathione production in Saccharomy- ces cerevisiae. J Biosci Bioeng. 2017;123:555–61.

24. Wang M, Sun J, Xue F, Shang F, Wang Z, Tan T. The effect of intracellular amino acids on GSH production by high-cell-density cultivation of Sac- charomyces cerevisiae. Appl Biochem Biotechnol. 2012;168:198–205.

25. Hans MA, Heinzle E, Wittmann C. Quantification of intracellular amino acids in batch cultures of Saccharomyces cerevisiae. Appl Microbiol Bio- technol. 2001;56:776–9.

26. Bu X, Sun L, Shang F, Yan G. Comparative metabolomics profiling of engineered Saccharomyces cerevisiae lead to a strategy that improving β-carotene production by acetate supplementation. PLoS ONE. 2017;12: e0188385.

27. Wen S, Zhang T, Tan T. Optimization of the amino acid composition in glutathione fermentation. Proc Biochem. 2005;40:3474–9.

28. Wen S, Zhang T, Tan T. Maximizing production of glutathione by amino acid modulation and high-cell-density fed-batch culture of Saccharomy- ces cerevisiae. Proc Biochem. 2006;41:2424–8.

29. Wang Z, Tan T, Song J. Effect of amino acids addition and feedback control strategies on the high-cell-density cultivation of Saccharomyces cerevisiae for glutathione production. Proc Biochem. 2007;42:108–11.

30. Lorenz E, Schmacht M, Stahl U, Senz M. Enhanced incorporation yield of cysteine for glutathione overproduction by fedbatch fermentation of Saccharomyces cerevisiae. J Biotechnol. 2015;216:131–9.

31. Schmacht M, Lorenz E, Senz M. Microbial production of glutathione. World J Microbiol Biotechnol. 2017;33:106.

32. Kobayashi J, Sasaki D, Hara KY, Kondo A. Genetic engineering of microor- ganisms for high glutathione production. In: Perjési P, editor. Glutathione: biosynthesis, functions and biological implications. Nova Science Publish- ers; 2019. p. 83–103.

33. Suzuki T, Yokoyama A, Tsuji T, Ikeshima E, Nakashima K, Ikushima S, Kob- ayashi C, Yoshida S. Identification and characterization of genes involved in glutathione production in yeast. J Biosci Bioeng. 2011;112:107–13.

34. Qiu Z, Deng Z, Tan H, Zhou S, Cao L. Engineering the robustness of Sac- charomyces cerevisiae by introducing bifunctional glutathione synthase gene. J Ind Microbiol Biotechnol. 2015;42:537–42.

35. Tang L, Wang W, Zhou W, Cheng K, Yang Y, Liu M, Cheng K, Wang W. Three-pathway combination for glutathione biosynthesis in Saccharomy- ces cerevisiae. Microb Cell Fact. 2015;14:139.

36. Yamada R, Taniguchi N, Tanaka T, Ogino C, Fukuda H, Kondo A. Cocktail delta-integration: a novel method to construct cellulolytic enzyme expression ratio-optimized yeast strains. Microb Cell Fact. 2010;14:32.

37. Ishii J, Kondo T, Makino H, Ogura A, Matsuda F, Kondo A. Three gene expression vector sets for concurrently expressing multiple genes in Sac- charomyces cerevisiae. FEMS Yeast Res. 2014;14:399–411.

38. Ito H, Fukuda Y, Murata K, Kimura A. Transformation of intact yeast cells treated with alkali cations. J Bacteriol. 1983;153:163–8.

39. Chen DC, Yang BC, Kuo TT. One-step transformation of yeast in stationary phase. Curr Genet. 1992;21:83–4.

40. Kobayashi J, Sasaki D, Kondo A. A procedure for precise determination of glutathione produced by Saccharomyces cerevisiae. Bio Protoc. 2018;8: e2887.

参考文献をもっと見る