リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Constitutive glucose dehydrogenase elevates intracellular NADPH levels and luciferase luminescence in Bacillus subtilis」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Constitutive glucose dehydrogenase elevates intracellular NADPH levels and luciferase luminescence in Bacillus subtilis

Wu, Yuzheng Kawabata, Honami Kita, Kyosuke Ishikawa, Shu Tanaka, Kan Yoshida, Ken-ichi 神戸大学

2022.12.20

概要

Background Genetic modifications in Bacillus subtilis have allowed the conversion of myo-inositol into scyllo-inositol, which is proposed as a therapeutic agent for Alzheimer's disease. This conversion comprises two reactions catalyzed by two distinct inositol dehydrogenases, IolG and IolW. The IolW-mediated reaction requires the intracellular regeneration of NADPH, and there appears to be a limit to the endogenous supply of NADPH, which may be one of the rate-determining factors for the conversion of inositol. The primary mechanism of NADPH regeneration in this bacterium remains unclear. Results The gdh gene of B. subtilis encodes a sporulation-specific glucose dehydrogenase that can use NADP+ as a cofactor. When gdh was modified to be constitutively expressed, the intracellular NADPH level was elevated, increasing the conversion of inositol. In addition, the bacterial luciferase derived from Photorhabdus luminescens became more luminescent in cells in liquid culture and colonies on culture plates. Conclusion The results indicated that the luminescence of luciferase was representative of intracellular NADPH levels. Luciferase can therefore be employed to screen for mutations in genes involved in NADPH regeneration in B. subtilis, and artificial manipulation to enhance NADPH regeneration can promote the production of substances such as scyllo-inositol.

この論文で使われている画像

参考文献

1. Chin JW, Cirino PC. Improved NADPH supply for xylitol production by engineered Escherichia coli with glycolytic mutations. Biotechnol Prog. 2011;27:333–41.

2. Pongtharangkul T, Chuekitkumchorn P, Suwanampa N, Payongsri P, Honda K, Panbangred W. Kinetic properties and stability of glucose dehydrogenase from Bacillus amyloliquefaciens SB5 and its potential for cofactor regeneration. AMB Expr. 2015;5:68.

3. McLaurin J, Kierstead M, Brown ME, Hawkes CA, Lambermon MHL, Phinney AL, et al. Cyclohexanehexol inhibitors of Aβ aggregation prevent and reverse Alzheimer phenotype in a mouse model. Nat Med. 2006;12:801–8.

4. Ma K, Thomason LA, McLaurin J. scyllo-Inositol, preclinical, and clinical data for Alzheimer’s disease. Adv Pharmacol. 2012;64:177–212.

5. Fenili D, Brown M, Rappaport R, McLaurin J. Properties of scyllo-inositol as a therapeutic treatment of AD-like pathology. J Mol Med. 2007;85:603–11.

6. Salloway S, Sperling R, Keren R, Porsteinsson AP, van Dyck CH, Tariot PN, et al. ELND005-AD201 Investigators. a phase 2 randomized trial of ELND005, scyllo-inositol, in mild to moderate Alzheimer disease. Neurol ogy. 2011;77:1253–62.

7. Tanaka K, Takenaka S, Yoshida K. scyllo-Inositol, a therapeutic agent for Alzheimer’s disease. Austin J Clin Neurol. 2015;2:1040.

8. Morinaga T, Ashida H, Yoshida K. Identifcation of two scyllo-inositol dehydrogenases in Bacillus subtilis. Microbiology. 2010;156:1538–46.

9. Yamaoka M, Osawa S, Morinaga T, Takenaka S, Yoshida K. A cell factory of Bacillus subtilis engineered for the simple bioconversion of myo-inositol to scyllo-inositol, a potential therapeutic agent for Alzheimer’s disease. Microb Cell Fact. 2011;10:69.

10. Tanaka K, Tajima S, Takenaka S, Yoshida K. An improved Bacillus subtilis cell factory for producing scyllo-inositol, a promising therapeutic agent for Alzheimer’s disease. Microb Cell Fact. 2013;12:124.

11. Tanaka K, Natsume A, Ishikawa S, Takenaka S, Yoshida K. A new-gener ation of Bacillus subtilis cell factory for further elevated scyllo-inositol production. Microb Cell Fact. 2017;16:67.

12. Lee WH, Kim MD, Jin YS, Seo JH. Engineering of NADPH regenerators in Escherichia coli for enhanced biotransformation. Appl Microbiol Biotech nol. 2013;97:2761–72.

13. Rühl M, Le Coq D, Aymerich S, Sauer U. 13C-fux analysis reveals NADPHbalancing transhydrogenation cycles in stationary phase of nitrogenstarving Bacillus subtilis. J Biol Chem. 2012;287:27959–70.

14. Fuhrer T, Sauer U. Diferent biochemical mechanisms ensure networkwide balancing of reducing equivalents in microbial metabolism. J Bacteriol. 2009;191:2112–21.

15. Lerondel G, Doan T, Zamboni N, Sauer U, Aymerich S. YtsJ has the major physiological role of the four paralogous malic enzyme isoforms in Bacillus subtilis. J Bacteriol. 2006;188:4727–36.

16. Fillinger S, Boschi-Muller S, Azza S, Dervyn E, Branlant G, Aymerich S. Two glyceraldehyde-3-phosphate dehydrogenases with opposite physiological roles in a nonphotosynthetic bacterium. J Biol Chem. 2000;275:14031–7.

17. Ujita S, Kimura K. Glucose-6-phosphate dehydrogenase, vegetative and spore Bacillus subtilis. Methods Enzymol. 1982;89 Pt D:258–61.

18. Zamboni N, Fischer E, Laudert D, Aymerich S, Hohmann HP, Sauer U. The Bacillus subtilis yqjI gene encodes the NADP+-dependent 6-P-glu conate dehydrogenase in the pentose phosphate pathway. J Bacteriol. 2004;186:4528–34.

19. Jin S, Sonenshein AL. Identifcation of two distinct Bacillus subtilis citrate synthase genes. J Bacteriol. 1994;176:4669–79.

20. Jourlin-Castelli C, Mani N, Nakano MM, Sonenshein AL. CcpC, a novel regulator of the LysR family required for glucose repression of the citB gene in Bacillus subtilis. J Mol Biol. 2000;295:865–78.

21. Kim HJ, Roux A, Sonenshein AL. Direct and indirect roles of CcpA in regu lation of Bacillus subtilis Krebs cycle genes. Mol Microbiol. 2002;45:179–90.

22. Au N, Kuester -Schoeck E, Mandava V, Bothwell LE, Canny SP, Chachu K, et al. Genetic composition of the Bacillus subtilis SOS system. J Bacteriol. 2005;187:7655–66.

23. Blencke HM, Homuth G, Ludwig H, Mäder U, Hecker M, Stülke J. Transcriptional profling of gene expression in response to glucose in Bacillus subtilis: regulation of the central metabolic pathways. Metab Eng. 2003;5:133–49.

24. Duigou S, Ehrlich SD, Noirot P, Noirot -Gros MF. Distinctive genetic features exhibited by the Y-family DNA polymerases in Bacillus subtilis. Mol Micro biol. 2004;54:439–51.

25. Brodl E, Winkler A, Macheroux P. Molecular mechanisms of bacterial bioluminescence. Comput Struct Biotechnol J. 2018;16:551–64.

26. Shimada T, Tanaka K. Use of a bacterial luciferase monitoring system to estimate real -time dynamics of intracellular metabolism in Escherichia coli. Appl Environ Microbiol. 2016;82:5960–8.

27. Radeck J, Kraft K, Bartels J, Cikovic T, Dürr F, Emenegger J, et al. The Bacil lus BioBrick box: generation and evaluation of essential genetic building blocks for standardized work with Bacillus subtilis. J Biol Eng. 2013;7:29.

28. Weckbecker A, Hummel W. Glucose dehydrogenase for the regenera tion of NADPH and NADH. In: Barredo JL, editor. Microbial enzymes and biotransformations. Methods in biotechnology. Totowa: Humana Press; 2005. p. 225–38.

29. Fujita Y, Ramaley R, Freese E. Location and properties of glucose dehy drogenase in sporulating cells and spores of Bacillus subtilis. J Bacteriol. 1977;132:282–93.

30. Zhang W, O’Connor K, Wang DI, Li Z. Bioreduction with efcient recycling of NADPH by coupled permeabilized microorganisms. Appl Environ Microbiol. 2009;75:687–94.

31. Pedreira T, Elfmann C, Stülke J. The current state of SubtiWiki, the database for the model organism Bacillus subtilis. Nucleic Acids Res. 2022;50:D875–82.

32. Bagyan I, Hobot J, Cutting S. A compartmentalized regulator of develop mental gene expression in Bacillus subtilis. J Bacteriol. 1996;178:4500–7.

33. Stülke J, Hillen W. Regulation of carbon catabolism in Bacillus species. Annu Rev Microbiol. 2000;54:849–80.

34. Zhang XZ, Yan X, Cui ZL, Hong Q, Li SP. mazF, a novel counter -selectable marker for unmarked chromosomal manipulation in Bacillus subtilis. Nucleic Acids Res. 2006;34: e71.

35. Kubitschek HE. Growth during the bacterial cell cycle: analysis of cell size distribution. Biophys J. 1969;9:792–809.

36. Image J. Image Processing and Analysis in Java. https://imagej.nih.gov/ij/ index.html. Accessed 19 Dec 2022.

参考文献をもっと見る