リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Electrical Conductivities of Narrow-Bandgap Polymers with Two Types of π-Conjugated Post-Crosslinking」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Electrical Conductivities of Narrow-Bandgap Polymers with Two Types of π-Conjugated Post-Crosslinking

Guo Hao-xuan Takahara Hiroshi Imai Yusuke Aota Hiroyuki 50247897 関西大学 DOI:10.3390/polym14122472

2022.06.17

概要

Bandgap energy is one of the most important properties for developing electronic de- vices because of its influence on the electrical conductivity of substances. Many methods have been developed to control bandgap, one of which is the realization of conducting polymers us- ing narrow-bandgap polymers; however, the preparation of these polymers is complex. In this study, water-soluble, narrow-bandgap polymers with reactive groups were prepared by the addition– condensation reaction of pyrrole (Pyr), benzaldehyde-2-sulfonic acid sodium salt (BS), and aldehyde- containing reactive groups (aldehyde and pyridine) for post-crosslinking. Two types of reactions, aldehyde with p-phenylenediamine and pyridine with 1,2-dibromoethylene, were carried out for the π-conjugated post-crosslinking between polymers. The polymers were characterized by proton nuclear magnetic resonance (1H-NMR), thermogravimetric/differential thermal analysis (TG/DTA), UltraViolet-Visible-Near InfraRed spectroscopy (UV-Vis-NIR), and other analyses. The bandgaps of the polymers, calculated from their absorption, were less than 0.5 eV. Post-crosslinking prevents resolubility and develops electron-conducting routes between the polymer chains for π-conjugated systems. Moreover, the post-crosslinked polymers maintain their narrow bandgaps. The electrical conductivities of the as-prepared polymers were two orders of magnitude higher than those before the crosslinking.

参考文献

1. Burroughes, J.H.; Bradley, D.D.C.; Brown, A.R.; Marks, R.N.; Mackay, K.; Friend, R.H.; Burn, P.L.; Holmes, A.B. Light-emitting diodes based on conjugated polymers. Nature 1990, 347, 539–541. [CrossRef]

2. Gross, M.; Muller, D.C.; Nothofer, H.-G.; Scherf, U.; Neher, D.; Bräuchle, C.; Meerholz, K. Improving the performance of doped π-conjugated polymers for use in organic light-emitting diodes. Nature 2000, 405, 661–665. [CrossRef] [PubMed]

3. Yang, R.-Q.; Tian, R.-Y.; Yan, J.-G.; Zhang, Y.; Yang, J.; Hou, Q.; Yang, W.; Zhang, C.; Cao, Y. Deep-Red Electroluminescent Polymers: Synthesis and Characterization of New Low-Band-Gap Conjugated Copolymers for Light-Emitting Diodes and Photovoltaic Devices. Macromolecules 2005, 38, 244–253. [CrossRef]

4. Kawabata, K.; Saito, M.; Osaka, I.; Takimiya, K. Very Small Bandgap π-Conjugated Polymers with Extended Thienoquinoids. J. Am. Chem. Soc. 2016, 138, 7725–7732. [CrossRef]

5. Cheng, Y.-J.; Yang, S.-H.; Hsu, C.-S. Synthesis of conjugated polymers for organic solar cell applications. Chem. Rev. 2009, 109, 5868–5923. [CrossRef] [PubMed]

6. Woo, C.H.; Beaujuge, P.M.; Holcombe, T.W.; Lee, O.P.; Frechet, J.M.J. Incorporation of Furan into Low Band-Gap Polymers for Efficient Solar Cells. J. Am. Chem. Soc. 2010, 132, 15547–15549. [CrossRef]

7. Wang, M.; Hu, X.-W.; Liu, P.; Li, W.; Gong, X.; Huang, F.; Cao, Y. Donor-Acceptor Conjugated Polymer Based on Naphtho[1,2 c:5,6-c]bis[1,2,5]thiadiazole for High-Performance Polymer Solar Cells. J. Am. Chem. Soc. 2011, 133, 9638–9641. [CrossRef]

8. Cui, C.-H.; Fan, X.; Zang, M.-J.; Zhang, J.; Min, J.; Li, Y.-F. A D-A copolymer of dithienosilole and a new acceptor unit of naphtho[2,3-c]thiophene-4,9-dione for efficient polymer solar cells. Chem. Commun. 2011, 47, 11345–11347. [CrossRef]

9. Almeataq, M.S.; Yi, H.; Al-Faifi, S.; Alghamdi, A.A.B.; Iraqi, A.; Scarratt, N.W.; Wang, T.; Lidzey, D.G. Anthracene-based donor-acceptor low band gap polymers for application in solar cells. Chem. Commun. 2013, 49, 2252–2254. [CrossRef]

10. Feng, K.; Xu, X.-P.; Li, Z.-j.; Li, Y.; Li, K.; Yu, T.; Peng, Q. Low band gap benzothiophene-thienothiophene copolymers with conjugated alkylthiothieyl and alkoxycarbonyl cyanovinyl side chains for photovoltaic applications. Chem. Commun. 2015, 51, 6290–6292. [CrossRef]

11. Fu, H.; Li, Y.-X.; Yu, J.-W.; Wu, Z.; Fan, Q.-P.; Lin, F.; Woo, H.Y.; Gao, F.; Zhu, Z.-l.; Jen, K.-Y. High Efficiency (15.8%) All-Polymer Solar Cells Enabled by a Regioregular Narrow Bandgap Polymer Acceptor. J. Am. Chem. Soc. 2021, 143, 2665–2670. [CrossRef] [PubMed]

12. Shoji, E.; Freund, M. Potentiometric Saccharide Detection Based on the pKa Changes of Poly (aniline boronic acid). J. Am. Chem. Soc. 2002, 142, 12486–12493. [CrossRef] [PubMed]

13. Herland, A.; Inganas, O. Conjugated polymers as optical probes for protein interactions and protein conformations. Macromol. Rapid Commun. 2007, 28, 1703–1713. [CrossRef]

14. Luo, S.; Ali, E.M.; Tansil, N.C.; Yu, H.; Gao, S.; Kantchev, E.A.B.; Ying, J.Y. Poly(3,4-Ethylenedioxythiophene) (PEDOT) Nanobioin- terfaces: Thin, Ultrasmooth, and Functionalized PEDOT Films with in Vitro and in Vivo Biocompatibility. Langmuir 2008, 24, 8071–8077. [CrossRef]

15. Liu, W.-j.; Pink, M.; Lee, D. Conjugated polymer sensors built on π-extended borasiloxane cages. J. Am. Chem. Soc. 2009, 131, 8703–8707. [CrossRef]

16. Taroni, P.J.; Giovanni, S.; Kening, W.; Philip, C.; Manting, Q.; Han, Z.; Pugno, N.M.; Matteo, P.; Natalie, S.S.; Martin, H.; et al. Toward stretchable self-powered sensors based on the thermoelectric response of PEDOT:PSS/polyurethane blends. Adv. Funct. Mater. 2018, 28, 1704285. [CrossRef]

17. Kudoh, Y.; Akami, K.; Matsuya, Y. Solid electrolytic capacitor with highly stable conducting polymer as a counter electrode. Synth. Met. 1999, 102, 973. [CrossRef]

18. Nogami, K.; Sakamoto, K.; Hayakawa, T.; Kakimoto, M. The effects of hyperbranched poly(siloxysilane)s on conductive polymer aluminum solid electrolytic capacitors. J. Power Sources 2007, 166, 584–589. [CrossRef]

19. Shi, Y.; Peng, L.-L.; Ding, Y.; Zhao, Y.; Yu, G.-H. Nanostructured conductive polymers for advanced energy storage. Chem. Soc. Rev. 2015, 44, 6684–6696. [CrossRef]

20. Kim, M.; Yoo, J.; Im, H.; Kim, J. The effects of different oxidants on the characteristics of conductive polymer aluminum solid electrolyte capacitors. J. Power Sources 2013, 230, 1–9. [CrossRef]

21. Wakabayashi, T.; Katsunuma, M.; Kudo, K.; Okuzaki, H. pH-Tunable High-Performance PEDOT:PSS Aluminum Solid Electrolytic Capacitors. ACS Appl. Energy Mater. 2018, 1, 2157–2163. [CrossRef]

22. MacDiarmid, A.G. “Synthetic Metals”: A Novel Role for Organic Polymers (Nobel Lecture). Angew. Chem. Int. Ed. 2001, 40, 2581–2590. [CrossRef]

23. Meyers, F.F.; Heeger, A.J.; Bredas, J.L. Fine tuning of the band gap in conjugated polymers via control of block copolymer sequences. J. Chem. Phys. 1992, 97, 2750–2758. [CrossRef]

24. Roncali, J. Synthetic Principles for Bandgap Control in Linear ð-Conjugated Systems. Chem. Rev. 1997, 97, 173–205. [CrossRef] [PubMed]

25. Eldo, J.; Ajayaghosh, A. New Low Band Gap Polymers: Control of Optical and Electronic Properties in near Infrared Absorbing π-Conjugated Polysquaraines. Chem. Mater. 2002, 14, 410–418. [CrossRef]

26. Cheng, P.; Yang, Y. Narrowing the Band Gap: The Key to High-Performance Organic Photovoltaics. Acc. Chem. Res. 2020, 53, 1218–1228. [CrossRef]

27. Kobayashi, M.; Colaneri, N.; Boysel, M.; Wudl, F.; Heeger, A.J. The electronic and electrochemical properties of poly(isothianaphthene). J. Chem. Phys. 1985, 82, 5717–5723. [CrossRef]

28. Jenekhe, S.A. A class of narrow-band-gap semiconducting polymers. Nature 1986, 322, 345–347. [CrossRef]

29. Becker, R.; Blochl, G.; Braunling, H. Polyheteroarylmethines, Syntheses and Physical Properties. In Conjugated Polymeric Materials: Opportunities in Electronics, Optoelectronics, and Molecular Electronics; Springer: Dordrecht, The Netherlands, 1990; Volume 182, pp. 133–139.

30. Braunling, H.; Becker, R.; Blochl, G. Polyarylmethines; Synthesis and Physical Properties. Synth. Met. 1991, 42, 1539–1547. [CrossRef]

31. Meyers, F.; Adant, C.; Toussaint, J.M.; Bredas, J.L. AB initio study of the structural, electronic, and nonlinear optical properties of pyrrole derivatives. Synth. Met. 1991, 43, 3559–3562. [CrossRef]

32. Toussaint, J.M.; Brédas, J.L. Theoretical analysis of the geometric and electronic structure of small-band-gap polythiophenes: Poly (5,5′-bithiophene methine) and its derivatives. Macromolecules 1993, 26, 5240–5248. [CrossRef]

33. Tanaka, S.; Yamashita, Y. Syntheses of narrow band gap heterocyclic copolymers of aromatic-donor and quinonoid-acceptor units. Synth. Met. 1995, 69, 599–600. [CrossRef]

34. Akoudad, S.; Roncali, J. Electrogenerated poly(thiophenes) with extremely narrow bandgap and high stability under n-doping cycling. Chem. Commun. 1998, 19, 2081–2082. [CrossRef]

35. Hong, S.Y. Zero Band-Gap Polymers: Quantum-Chemical Study of Electronic Structures of Degenerate π-Conjugated Systems. Chem. Mater. 2000, 12, 495–500. [CrossRef]

36. Mai, C.-K.; Zhou, H.-Q.; Zhang, Y.; Henson, Z.B.; Nguyen, T.-Q.; Heeger, A.J.; Bazan, C.G. Facile Doping of Anionic Narrow- Band-Gap Conjugated Polyelectro-lytes During Dialysis. Angew. Chem. Int. Ed. 2013, 52, 12874–12878. [CrossRef] [PubMed]

37. Mai, C.-K.; Schlitz, R.A.; Su, G.M.; Spitzer, D.; Wang, X.-J.; Fronk, S.L.; Cahill, D.G.; Chabinyc, M.L.; Bazan, C.G. Side-Chain Effects on the Conductivity, Morphology, and Thermoelectric Properties of Self-Doped Narrow-Band-Gap Conjugated Polyelectrolytes. J. Am. Chem. Soc. 2014, 136, 13478–13481. [CrossRef]

38. Poverenov, E.; Zamoshchik, N.; Patra, A.; Ridelman, Y.; Bendikov, M. Unusual Doping of Donor-Acceptor-Type Conjugated Polymers Using Lewis Acids. J. Am. Chem. Soc. 2014, 136, 5138–5149. [CrossRef]

39. Mai, C.-K.; Arai, T.; Liu, X.-F.; Fronk, S.L.; Su, G.M.; Segalman, R.A.; Chabinyc, M.L.; Bazan, G.C. Electrical properties of doped conjugated polyelectrolytes with modulated density of the ionic functionalities. Chem. Commun. 2015, 51, 17607–17610. [CrossRef]

40. Goel, M.; Heinrich, C.D.; Krauss, G.; Thelakkat, M. Principles of Structural Design of Conjugated Polymers Showing Excellent Charge Transport toward Thermoelectrics and Bioelectronics Applications. Macromol. Rapid Commun. 2019, 40, 1800915. [CrossRef]

41. Karikomi, M.; Kitamura, C.; Tanaka, S.; Yamashita, Y. New Narrow-Bandgap Polymer Composed of Benzobis(1,2,5-thiadiazole) and Thiophenes. J. Am. Chem. Soc. 1995, 117, 6791–6792. [CrossRef]

42. Casado, J.; Ortiz, R.P.; Delgado, M.C.R.; Hernández, V.; Navarrete, J.T.L.; Raimundo, J.-M.; Blanchard, P.; Allain, M.; Roncali, J. Alternated Quinoid/Aromatic Units in Terthiophenes Building Blocks for Electroactive Narrow Band Gap Polymers. Extended Spectroscopic, Solid State, Electrochemical, and Theoretical Study. J. Phys. Chem. B 2005, 109, 16616–16627. [CrossRef]

43. Aota, H.; Ishikawa, T.; Amiuchi, Y.; Yano, H.; Kunimoto, T.; Matsumoto, A. Band Gap and Absorption Profile Change by Changing Molecular Weight and Conformation of Water-soluble Narrow-band-gap Polymers. Chem. Lett. 2010, 39, 1288–1290. [CrossRef]

44. Aota, H.; Ishikawa, T.; Maki, Y.; Takaya, D.; Ejiri, H.; Amiuchi, Y.; Yano, H.; Kunimoto, T.; Matsumoto, A. Continuous Band Gap Control from 0.3 to 1.1 eV of π-Conjugated Polymers in Aqueous Solution. Chem. Lett. 2011, 40, 724–725. [CrossRef]

45. Guo, H.-X.; Ohashi, T.; Imai, Y.; Aota, H. Synthesis of Reactive Water-Soluble Narrow-Band-Gap Polymers for Post-Crosslinking. Polymers 2020, 12, 313. [CrossRef] [PubMed]

46. Rumer, J.W.; McCulloch, I. Organic photovoltaics: Crosslinking for optimal morphology and stability. Mater. Today 2015, 18, 425–435. [CrossRef]

47. Lee, H.-J.; Jo, Y.-R.; Kumar, S.; Yoo, S.J.; Kim, J.-G.; Kim, Y.-J.; Kim, B.-J.; Lee, J.-S. Close-Packed Polymer Crystals from Two-Monomer-Connected Precursors. Nat. Commun. 2016, 7, 12803. [CrossRef]

48. Chung, Y.; Hyun, K.H.; Kwon, Y. Fabrication of a biofuel cell improved by the π-conjugated electron pathway effect induced from a new enzyme catalyst employing terephthalaldehyde. Nanoscale 2016, 8, 1161–1168. [CrossRef]

49. Ochiai, B.; Tomita, I.; Endo, T. Thermal crosslinking of acetylene-containing polymers obtained by radical polymerization of aromatic enynes. Polymer 2001, 42, 8581–8586. [CrossRef]

50. Yu, G.-P.; Wang, J.-Y.; Liu, C.; Lin, E.-C.; Jian, X.-G. Soluble and curable poly(phthalazinone ether amide)s with terminal cyano groups and their crosslinking to heat resistant resin. Polymer 2009, 50, 1700–1708. [CrossRef]

51. Xu, J.; Wang, J.; Luft, J.C.; Tian, S.-M.; Owens, G.; Pandya, A.A.; Berglund, P.; Pohlhaus, P.; Maynor, B.W.; Smith, J. Rendering Protein-Based Particles Transiently Insoluble for Therapeutic Applications. J. Am. Chem. Soc. 2012, 134, 8774–8777. [CrossRef]

参考文献をもっと見る