リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「AdS/BCFT with brane-localized scalar field」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

AdS/BCFT with brane-localized scalar field

Kanda, Hiroki Sato, Masahide Suzuki, Yu-ki Takayanagi, Tadashi Wei, Zixia 京都大学 DOI:10.1007/JHEP03(2023)105

2023.03

概要

In this paper, we study the dynamics of end-of-the-world (EOW) branes in AdS with scalar fields localized on the branes as a new class of gravity duals of CFTs on manifolds with boundaries. This allows us to construct explicit solutions dual to boundary RG flows. We also obtain a variety of annulus-like or cone-like shaped EOW branes, which are not possible without the scalar field. We also present a gravity dual of a CFT on a strip with two different boundary conditions due to the scalar potential, where we find the confinement/deconfinement-like transition as a function of temperature and the scalar potential. Finally, we point out that this phase transition is closely related to the measurement-induced phase transition, via a Wick rotation.

この論文で使われている画像

参考文献

[1] J.L. Cardy, Conformal invariance and surface critical behavior, Nucl. Phys. B 240 (1984)

514 [INSPIRE].

[2] J.L. Cardy, Boundary conformal field theory, hep-th/0411189 [INSPIRE].

[3] D.M. McAvity and H. Osborn, Energy momentum tensor in conformal field theories near a

boundary, Nucl. Phys. B 406 (1993) 655 [hep-th/9302068] [INSPIRE].

[4] D.M. McAvity and H. Osborn, Conformal field theories near a boundary in general

dimensions, Nucl. Phys. B 455 (1995) 522 [cond-mat/9505127] [INSPIRE].

– 45 –

JHEP03(2023)105

As mentioned in section 4.1, this solution corresponds to a part of an exact sphere. Now

we make A dependent of r. Then inequality (A.3) can be read as

[5] J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Adv.

Theor. Math. Phys. 2 (1998) 231 [hep-th/9711200] [INSPIRE].

[6] S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical

string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

[7] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253

[hep-th/9802150] [INSPIRE].

[8] A. Karch and L. Randall, Open and closed string interpretation of SUSY CFT’s on branes

with boundaries, JHEP 06 (2001) 063 [hep-th/0105132] [INSPIRE].

[10] M. Fujita, T. Takayanagi and E. Tonni, Aspects of AdS/BCFT, JHEP 11 (2011) 043

[arXiv:1108.5152] [INSPIRE].

[11] M. Nozaki, T. Takayanagi and T. Ugajin, Central charges for BCFTs and holography,

JHEP 06 (2012) 066 [arXiv:1205.1573] [INSPIRE].

[12] S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT,

Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

[13] S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP 08 (2006)

045 [hep-th/0605073] [INSPIRE].

[14] V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement

entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].

[15] R.-X. Miao, C.-S. Chu and W.-Z. Guo, New proposal for a holographic boundary conformal

field theory, Phys. Rev. D 96 (2017) 046005 [arXiv:1701.04275] [INSPIRE].

[16] A. Almheiri, R. Mahajan, J. Maldacena and Y. Zhao, The Page curve of Hawking radiation

from semiclassical geometry, JHEP 03 (2020) 149 [arXiv:1908.10996] [INSPIRE].

[17] G. Penington, Entanglement wedge reconstruction and the information paradox, JHEP 09

(2020) 002 [arXiv:1905.08255] [INSPIRE].

[18] A. Almheiri, N. Engelhardt, D. Marolf and H. Maxfield, The entropy of bulk quantum fields

and the entanglement wedge of an evaporating black hole, JHEP 12 (2019) 063

[arXiv:1905.08762] [INSPIRE].

[19] L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys.

Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].

[20] L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999)

4690 [hep-th/9906064] [INSPIRE].

[21] S.S. Gubser, AdS/CFT and gravity, Phys. Rev. D 63 (2001) 084017 [hep-th/9912001]

[INSPIRE].

[22] A. Karch and L. Randall, Locally localized gravity, JHEP 05 (2001) 008 [hep-th/0011156]

[INSPIRE].

[23] S.B. Giddings, E. Katz and L. Randall, Linearized gravity in brane backgrounds, JHEP 03

(2000) 023 [hep-th/0002091] [INSPIRE].

[24] T. Shiromizu and D. Ida, Anti-de Sitter no hair, AdS/CFT and the brane world, Phys. Rev.

D 64 (2001) 044015 [hep-th/0102035] [INSPIRE].

– 46 –

JHEP03(2023)105

[9] T. Takayanagi, Holographic dual of BCFT, Phys. Rev. Lett. 107 (2011) 101602

[arXiv:1105.5165] [INSPIRE].

[25] T. Shiromizu, T. Torii and D. Ida, Brane world and holography, JHEP 03 (2002) 007

[hep-th/0105256] [INSPIRE].

[26] S. Nojiri, S.D. Odintsov and S. Zerbini, Quantum (in)stability of dilatonic AdS backgrounds

and holographic renormalization group with gravity, Phys. Rev. D 62 (2000) 064006

[hep-th/0001192] [INSPIRE].

[27] S. Nojiri and S.D. Odintsov, Brane world inflation induced by quantum effects, Phys. Lett.

B 484 (2000) 119 [hep-th/0004097] [INSPIRE].

[28] S.W. Hawking, T. Hertog and H.S. Reall, Brane new world, Phys. Rev. D 62 (2000) 043501

[hep-th/0003052] [INSPIRE].

[30] S. Kanno and J. Soda, Brane world effective action at low-energies and AdS/CFT, Phys.

Rev. D 66 (2002) 043526 [hep-th/0205188] [INSPIRE].

[31] R. Emparan et al., Holographic duals of evaporating black holes, arXiv:2301.02587

[CPHT-RR057.112022] [INSPIRE].

[32] A. Almheiri, R. Mahajan and J.E. Santos, Entanglement islands in higher dimensions,

SciPost Phys. 9 (2020) 001 [arXiv:1911.09666] [INSPIRE].

[33] M. Rozali et al., Information radiation in BCFT models of black holes, JHEP 05 (2020)

004 [arXiv:1910.12836] [INSPIRE].

[34] H.Z. Chen et al., Information flow in black hole evaporation, JHEP 03 (2020) 152

[arXiv:1911.03402] [INSPIRE].

[35] V. Balasubramanian et al., Geometric secret sharing in a model of Hawking radiation,

JHEP 01 (2021) 177 [arXiv:2003.05448] [INSPIRE].

[36] H. Geng and A. Karch, Massive islands, JHEP 09 (2020) 121 [arXiv:2006.02438]

[INSPIRE].

[37] H.Z. Chen et al., Quantum extremal islands made easy. Part I. Entanglement on the brane,

JHEP 10 (2020) 166 [arXiv:2006.04851] [INSPIRE].

[38] H.Z. Chen et al., Quantum extremal islands made easy. Part II. Black holes on the brane,

JHEP 12 (2020) 025 [arXiv:2010.00018] [INSPIRE].

[39] R. Bousso and E. Wildenhain, Gravity/ensemble duality, Phys. Rev. D 102 (2020) 066005

[arXiv:2006.16289] [INSPIRE].

[40] H.Z. Chen et al., Evaporating black holes coupled to a thermal bath, JHEP 01 (2021) 065

[arXiv:2007.11658] [INSPIRE].

[41] Y. Chen, V. Gorbenko and J. Maldacena, Bra-ket wormholes in gravitationally prepared

states, JHEP 02 (2021) 009 [arXiv:2007.16091] [INSPIRE].

[42] I. Akal et al., Entanglement entropy in a holographic moving mirror and the Page curve,

Phys. Rev. Lett. 126 (2021) 061604 [arXiv:2011.12005] [INSPIRE].

[43] M. Miyaji, Island for gravitationally prepared state and pseudo entanglement wedge, JHEP

12 (2021) 013 [arXiv:2109.03830] [INSPIRE].

[44] I. Akal et al., Holographic moving mirrors, Class. Quant. Grav. 38 (2021) 224001

[arXiv:2106.11179] [INSPIRE].

– 47 –

JHEP03(2023)105

[29] K. Koyama and J. Soda, Strongly coupled CFT in FRW universe from AdS/CFT

correspondence, JHEP 05 (2001) 027 [hep-th/0101164] [INSPIRE].

[45] H. Geng et al., Entanglement phase structure of a holographic BCFT in a black hole

background, JHEP 05 (2022) 153 [arXiv:2112.09132] [INSPIRE].

[46] A. Bhattacharya, A. Bhattacharyya, P. Nandy and A.K. Patra, Bath deformations, islands,

and holographic complexity, Phys. Rev. D 105 (2022) 066019 [arXiv:2112.06967]

[INSPIRE].

[47] Q.-L. Hu, D. Li, R.-X. Miao and Y.-Q. Zeng, AdS/BCFT and island for curvature-squared

gravity, JHEP 09 (2022) 037 [arXiv:2202.03304] [INSPIRE].

[48] T. Anous, M. Meineri, P. Pelliconi and J. Sonner, Sailing past the end of the world and

discovering the island, SciPost Phys. 13 (2022) 075 [arXiv:2202.11718] [INSPIRE].

[50] L. Bianchi, S. De Angelis and M. Meineri, Radiation, entanglement and islands from a

boundary local quench, arXiv:2203.10103 [QMUL-PH-22-10] [INSPIRE].

[51] I. Akal et al., Page curve under final state projection, Phys. Rev. D 105 (2022) 126026

[arXiv:2112.08433] [INSPIRE].

[52] I. Akal et al., Zoo of holographic moving mirrors, JHEP 08 (2022) 296 [arXiv:2205.02663]

[INSPIRE].

[53] H. Geng, L. Randall and E. Swanson, BCFT in a black hole background: an analytical

holographic model, JHEP 12 (2022) 056 [arXiv:2209.02074] [INSPIRE].

[54] A. Bhattacharjee and M. Saha, JT gravity from holographic reduction of 3D asymptotically

flat spacetime, JHEP 01 (2023) 138 [arXiv:2211.13415] [INSPIRE].

[55] M. Fujita, M. Kaminski and A. Karch, SL(2, Z) action on AdS/BCFT and Hall

conductivities, JHEP 07 (2012) 150 [arXiv:1204.0012] [INSPIRE].

[56] T. Ugajin, Two dimensional quantum quenches and holography, arXiv:1311.2562

[IPMU13-0221] [INSPIRE].

[57] J. Erdmenger, M. Flory and M.-N. Newrzella, Bending branes for DCFT in two

dimensions, JHEP 01 (2015) 058 [arXiv:1410.7811] [INSPIRE].

[58] J. Erdmenger et al., Holographic impurities and Kondo effect, Fortsch. Phys. 64 (2016) 322

[arXiv:1511.09362] [INSPIRE].

[59] T. Numasawa, N. Shiba, T. Takayanagi and K. Watanabe, EPR pairs, local projections and

quantum teleportation in holography, JHEP 08 (2016) 077 [arXiv:1604.01772] [INSPIRE].

[60] D. Seminara, J. Sisti and E. Tonni, Corner contributions to holographic entanglement

entropy in AdS4 /BCFT3 , JHEP 11 (2017) 076 [arXiv:1708.05080] [INSPIRE].

[61] D. Seminara, J. Sisti and E. Tonni, Holographic entanglement entropy in AdS4 /BCFT3 and

the Willmore functional, JHEP 08 (2018) 164 [arXiv:1805.11551] [INSPIRE].

[62] Y. Hikida, Y. Kusuki and T. Takayanagi, Eigenstate thermalization hypothesis and modular

invariance of two-dimensional conformal field theories, Phys. Rev. D 98 (2018) 026003

[arXiv:1804.09658] [INSPIRE].

[63] T. Shimaji, T. Takayanagi and Z. Wei, Holographic quantum circuits from splitting/joining

local quenches, JHEP 03 (2019) 165 [arXiv:1812.01176] [INSPIRE].

– 48 –

JHEP03(2023)105

[49] T. Kawamoto et al., Holographic local operator quenches in BCFTs, JHEP 05 (2022) 060

[arXiv:2203.03851] [INSPIRE].

[64] P. Caputa et al., Double local quenches in 2D CFTs and gravitational force, JHEP 09

(2019) 018 [arXiv:1905.08265] [INSPIRE].

[65] M. Mezei and J. Virrueta, Exploring the membrane theory of entanglement dynamics, JHEP

02 (2020) 013 [arXiv:1912.11024] [INSPIRE].

[66] W. Reeves et al., Looking for (and not finding) a bulk brane, JHEP 12 (2021) 002

[arXiv:2108.10345] [INSPIRE].

[67] Y. Kusuki, Analytic bootstrap in 2D boundary conformal field theory: towards braneworld

holography, JHEP 03 (2022) 161 [arXiv:2112.10984] [INSPIRE].

[69] T. Numasawa and I. Tsiares, Universal dynamics of heavy operators in boundary CFT2 ,

JHEP 08 (2022) 156 [arXiv:2202.01633] [INSPIRE].

[70] J. Chandra and T. Hartman, Coarse graining pure states in AdS/CFT, arXiv:2206.03414

[INSPIRE].

[71] Y. Kusuki, Semiclassical gravity from averaged boundaries in two-dimensional boundary

conformal field theories, Phys. Rev. D 106 (2022) 066020 [arXiv:2206.03035] [INSPIRE].

[72] S. Antonini et al., Holographic measurement and bulk teleportation, JHEP 12 (2022) 124

[arXiv:2209.12903] [INSPIRE].

[73] Y. Kusuki and Z. Wei, AdS/BCFT from conformal bootstrap: construction of gravity with

branes and particles, JHEP 01 (2023) 108 [arXiv:2210.03107] [INSPIRE].

[74] M. Gutperle and J. Samani, Holographic RG-flows and boundary CFTs, Phys. Rev. D 86

(2012) 106007 [arXiv:1207.7325] [INSPIRE].

[75] J. Estes et al., On holographic defect entropy, JHEP 05 (2014) 084 [arXiv:1403.6475]

[INSPIRE].

[76] N. Kobayashi, T. Nishioka, Y. Sato and K. Watanabe, Towards a C-theorem in defect CFT,

JHEP 01 (2019) 039 [arXiv:1810.06995] [INSPIRE].

[77] Y. Sato, Boundary entropy under ambient RG flow in the AdS/BCFT model, Phys. Rev. D

101 (2020) 126004 [arXiv:2004.04929] [INSPIRE].

[78] S. Chapman, D. Ge and G. Policastro, Holographic complexity for defects distinguishes

action from volume, JHEP 05 (2019) 049 [arXiv:1811.12549] [INSPIRE].

[79] Y. Sato and K. Watanabe, Does boundary distinguish complexities?, JHEP 11 (2019) 132

[arXiv:1908.11094] [INSPIRE].

[80] P. Braccia, A.L. Cotrone and E. Tonni, Complexity in the presence of a boundary, JHEP 02

(2020) 051 [arXiv:1910.03489] [INSPIRE].

[81] Y. Sato, Complexity in a moving mirror model, Phys. Rev. D 105 (2022) 086016

[arXiv:2108.04637] [INSPIRE].

[82] J. Hernandez, R.C. Myers and S.-M. Ruan, Quantum extremal islands made easy. Part III.

Complexity on the brane, JHEP 02 (2021) 173 [arXiv:2010.16398] [INSPIRE].

[83] S. Collier, D. Mazac and Y. Wang, Bootstrapping boundaries and branes, JHEP 02 (2023)

019 [arXiv:2112.00750] [INSPIRE].

– 49 –

JHEP03(2023)105

[68] M. Miyaji, T. Takayanagi and T. Ugajin, Spectrum of end of the world branes in

holographic BCFTs, JHEP 06 (2021) 023 [arXiv:2103.06893] [INSPIRE].

[84] A. Chalabi et al., Weyl anomalies of four dimensional conformal boundaries and defects,

JHEP 02 (2022) 166 [arXiv:2111.14713] [INSPIRE].

[85] A. Belin, S. Biswas and J. Sully, The spectrum of boundary states in symmetric orbifolds,

JHEP 01 (2022) 123 [arXiv:2110.05491] [INSPIRE].

[86] K. Suzuki, Y.-K. Suzuki, T. Tsuda and M. Watanabe, Information metric on the boundary,

arXiv:2212.10899 [RUP-22-28] [INSPIRE].

[87] S. Cooper et al., Black hole microstate cosmology, JHEP 07 (2019) 065

[arXiv:1810.10601] [INSPIRE].

[89] M. Van Raamsdonk, Comments on wormholes, ensembles, and cosmology, JHEP 12 (2021)

156 [arXiv:2008.02259] [INSPIRE].

[90] M. Van Raamsdonk, Cosmology from confinement?, JHEP 03 (2022) 039

[arXiv:2102.05057] [INSPIRE].

[91] C. Waddell, Bottom-up holographic models for cosmology, JHEP 09 (2022) 176

[arXiv:2203.03096] [INSPIRE].

[92] Y.-K. Suzuki, One-loop correction to the AdS/BCFT partition function in three-dimensional

pure gravity, Phys. Rev. D 105 (2022) 026023 [arXiv:2106.00206] [INSPIRE].

[93] H. Omiya and Z. Wei, Causal structures and nonlocality in double holography, JHEP 07

(2022) 128 [arXiv:2107.01219] [INSPIRE].

[94] K. Suzuki and T. Takayanagi, BCFT and islands in two dimensions, JHEP 06 (2022) 095

[arXiv:2202.08462] [INSPIRE].

[95] Y.-K. Suzuki and S. Terashima, On the dynamics in the AdS/BCFT correspondence, JHEP

09 (2022) 103 [arXiv:2205.10600] [INSPIRE].

[96] K. Izumi et al., Brane dynamics of holographic BCFTs, JHEP 10 (2022) 050

[arXiv:2205.15500] [INSPIRE].

[97] M. Chiodaroli, E. D’Hoker, Y. Guo and M. Gutperle, Exact half-BPS string-junction

solutions in six-dimensional supergravity, JHEP 12 (2011) 086 [arXiv:1107.1722]

[INSPIRE].

[98] M. Chiodaroli, E. D’Hoker and M. Gutperle, Holographic duals of boundary CFTs, JHEP

07 (2012) 177 [arXiv:1205.5303] [INSPIRE].

[99] A. Karch and L. Randall, Geometries with mismatched branes, JHEP 09 (2020) 166

[arXiv:2006.10061] [INSPIRE].

[100] C. Bachas, S. Chapman, D. Ge and G. Policastro, Energy reflection and transmission at 2D

holographic interfaces, Phys. Rev. Lett. 125 (2020) 231602 [arXiv:2006.11333] [INSPIRE].

[101] P. Simidzija and M. Van Raamsdonk, Holo-ween, JHEP 12 (2020) 028 [arXiv:2006.13943]

[INSPIRE].

[102] H. Ooguri and T. Takayanagi, Cobordism conjecture in AdS, arXiv:2006.13953 [INSPIRE].

[103] M.V. Raamsdonk and C. Waddell, Holographic and localization calculations of boundary F

for N = 4 SUSY Yang-Mills theory, JHEP 02 (2021) 222 [arXiv:2010.14520] [INSPIRE].

– 50 –

JHEP03(2023)105

[88] S. Antonini and B. Swingle, Cosmology at the end of the world, Nature Phys. 16 (2020) 881

[arXiv:1907.06667] [INSPIRE].

[104] C.F. Uhlemann, Islands and Page curves in 4d from type IIB, JHEP 08 (2021) 104

[arXiv:2105.00008] [INSPIRE].

[105] L. Coccia and C.F. Uhlemann, Mapping out the internal space in AdS/BCFT with Wilson

loops, JHEP 03 (2022) 127 [arXiv:2112.14648] [INSPIRE].

[106] A. Karch, H. Sun and C.F. Uhlemann, Double holography in string theory, JHEP 10 (2022)

012 [arXiv:2206.11292] [INSPIRE].

[107] I. Akal, Y. Kusuki, T. Takayanagi and Z. Wei, Codimension two holography for wedges,

Phys. Rev. D 102 (2020) 126007 [arXiv:2007.06800] [INSPIRE].

[109] H. Geng et al., Jackiw-Teitelboim gravity from the Karch-Randall braneworld, Phys. Rev.

Lett. 129 (2022) 231601 [arXiv:2206.04695] [INSPIRE].

[110] H. Geng, Aspects of AdS2 quantum gravity and the Karch-Randall braneworld, JHEP 09

(2022) 024 [arXiv:2206.11277] [INSPIRE].

[111] N. Ogawa, T. Takayanagi, T. Tsuda and T. Waki, Wedge holography in flat space and

celestial holography, Phys. Rev. D 107 (2023) 026001 [arXiv:2207.06735] [INSPIRE].

[112] J.H. Lee, D. Neuenfeld and A. Shukla, Bounds on gravitational brane couplings and

tomography in AdS3 black hole microstates, JHEP 10 (2022) 139 [arXiv:2206.06511]

[INSPIRE].

[113] J. Erdmenger, C. Hoyos, A. O’Bannon and J. Wu, A holographic model of the Kondo effect,

JHEP 12 (2013) 086 [arXiv:1310.3271] [INSPIRE].

[114] J. Erdmenger et al., Entanglement entropy in a holographic Kondo model, Fortsch. Phys. 64

(2016) 109 [arXiv:1511.03666] [INSPIRE].

[115] J. Erdmenger, C.M. Melby-Thompson and C. Northe, Holographic RG flows for Kondo-like

impurities, JHEP 05 (2020) 075 [arXiv:2001.04991] [INSPIRE].

[116] M. Miyaji and C. Murdia, Holographic BCFT with a defect on the end-of-the-world brane,

JHEP 11 (2022) 123 [arXiv:2208.13783] [INSPIRE].

[117] S. Biswas, J. Kastikainen, S. Shashi and J. Sully, Holographic BCFT spectra from brane

mergers, JHEP 11 (2022) 158 [arXiv:2209.11227] [INSPIRE].

[118] T. Hartman and J. Maldacena, Time evolution of entanglement entropy from black hole

interiors, JHEP 05 (2013) 014 [arXiv:1303.1080] [INSPIRE].

[119] Y. Nakata et al., New holographic generalization of entanglement entropy, Phys. Rev. D

103 (2021) 026005 [arXiv:2005.13801] [INSPIRE].

[120] B. Skinner, J. Ruhman and A. Nahum, Measurement-induced phase transitions in the

dynamics of entanglement, Phys. Rev. X 9 (2019) 031009 [arXiv:1808.05953] [INSPIRE].

[121] Y. Li, X. Chen and M.P.A. Fisher, Quantum Zeno effect and the many-body entanglement

transition, Phys. Rev. B 98 (2018) 205136 [arXiv:1808.06134] [INSPIRE].

[122] Y. Li, X. Chen and M.P.A. Fisher, Measurement-driven entanglement transition in hybrid

quantum circuits, Phys. Rev. B 100 (2019) 134306 [arXiv:1901.08092] [INSPIRE].

– 51 –

JHEP03(2023)105

[108] R.-X. Miao, An exact construction of codimension two holography, JHEP 01 (2021) 150

[arXiv:2009.06263] [INSPIRE].

[123] K. Kawabata, T. Numasawa and S. Ryu, Entanglement phase transition induced by the

non-hermitian skin effect, arXiv:2206.05384 [INSPIRE].

[124] J.D. Brown and M. Henneaux, Central charges in the canonical realization of asymptotic

symmetries: an example from three-dimensional gravity, Commun. Math. Phys. 104 (1986)

207 [INSPIRE].

[125] P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat.

Mech. 0406 (2004) P06002 [hep-th/0405152] [INSPIRE].

[126] I. Affleck and A.W.W. Ludwig, Universal noninteger ‘ground state degeneracy’ in critical

quantum systems, Phys. Rev. Lett. 67 (1991) 161 [INSPIRE].

[128] I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl.

Phys. B 556 (1999) 89 [hep-th/9905104] [INSPIRE].

[129] S.W. Hawking and D.N. Page, Thermodynamics of black holes in anti-de Sitter space,

Commun. Math. Phys. 87 (1983) 577 [INSPIRE].

[130] E. Witten, Anti-de Sitter space, thermal phase transition, and confinement in gauge

theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].

[131] M. Banados, Three-dimensional quantum geometry and black holes, AIP Conf. Proc. 484

(1999) 147 [hep-th/9901148] [INSPIRE].

[132] M.M. Roberts, Time evolution of entanglement entropy from a pulse, JHEP 12 (2012) 027

[arXiv:1204.1982] [INSPIRE].

[133] A. Mollabashi et al., Pseudo entropy in free quantum field theories, Phys. Rev. Lett. 126

(2021) 081601 [arXiv:2011.09648] [INSPIRE].

[134] A. Mollabashi et al., Aspects of pseudoentropy in field theories, Phys. Rev. Res. 3 (2021)

033254 [arXiv:2106.03118] [INSPIRE].

[135] Y. Aharonov, D.Z. Albert and L. Vaidman, How the result of a measurement of a

component of the spin of a spin-1/2 particle can turn out to be 100, Phys. Rev. Lett. 60

(1988) 1351 [INSPIRE].

[136] J. Dressel et al., Colloquium. Understanding quantum weak values: basics and applications,

Rev. Mod. Phys. 86 (2014) 307 [arXiv:1305.7154].

[137] P. Calabrese and J.L. Cardy, Time-dependence of correlation functions following a quantum

quench, Phys. Rev. Lett. 96 (2006) 136801 [cond-mat/0601225] [INSPIRE].

[138] P. Calabrese and J. Cardy, Quantum quenches in 1 + 1 dimensional conformal field

theories, J. Stat. Mech. 1606 (2016) 064003 [arXiv:1603.02889] [INSPIRE].

– 52 –

JHEP03(2023)105

[127] D. Friedan and A. Konechny, On the boundary entropy of one-dimensional quantum systems

at low temperature, Phys. Rev. Lett. 93 (2004) 030402 [hep-th/0312197] [INSPIRE].

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る