リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Some disquisitions on cosmological 2-form dualities」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Some disquisitions on cosmological 2-form dualities

Aoki, Katsuki Beltrán Jiménez, Jose Figueruelo, David 京都大学 DOI:10.1088/1475-7516/2023/04/059

2023.04

概要

In this work we study different aspect of self-interacting 2-form fields with special emphasis in their cosmological applications. We provide the explicit construction of how massless 2-forms are compatible with the cosmological principle without resorting to the dual scalar field formulation. In terms of the 2-form, the residual Euclidean group is non-trivially realised by means of a combination of external spatial translations and internal gauge transformations. After presenting the general discussion of the dualities in cosmological scenarios, we analyse particular examples for some singular models and discuss in some detail the dual descriptions of the DBI, the cuscuton and the ghost condensate as well as the role of the duality in the effective field theories of cosmological perturbations. We then proceed to analysing scenarios with several self-interacting massless 2-forms and we show that they naturally provide the dual description of a solid. We then show how the perfect fluid and superfluids can be obtained by taking the appropriate limits in the dual formulations. We finally consider the case of massive 2-forms and their duals and briefly discuss their potential signatures in gravitational waves astronomy.

参考文献

[1] N. J. Secrest, S. von Hausegger, M. Rameez, R. Mohayaee, and S. Sarkar, A Challenge to the

Standard Cosmological Model, Astrophys. J. Lett. 937 (2022), no. 2 L31, [arXiv:2206.05624].

[2] C. Dalang and C. Bonvin, On the kinematic cosmic dipole tension, Mon. Not. Roy. Astron.

Soc. 512 (2022), no. 3 3895–3905, [arXiv:2111.03616].

[3] C. Guandalin, J. Piat, C. Clarkson, and R. Maartens, Theoretical systematics in testing the

Cosmological Principle with the kinematic quasar dipole, arXiv:2212.04925.

[4] F. Sorrenti, R. Durrer, and M. Kunz, The Dipole of the Pantheon+SH0ES Data,

arXiv:2212.10328.

[5] F. Atrio-Barandela, A. Kashlinsky, H. Ebeling, D. J. Fixsen, and D. Kocevski, Probing the

Dark Flow Signal in Wmap 9 -year and Planck Cosmic Microwave Background Maps,

Astrophys. J. 810 (2015), no. 2 143, [arXiv:1411.4180].

[6] J. Cervero and L. Jacobs, Classical Yang-Mills Fields in a Robertson-walker Universe, Phys.

Lett. B 78 (1978) 427–429.

[7] D. V. Galtsov and M. S. Volkov, Yang-Mills cosmology: Cold matter for a hot universe, Phys.

Lett. B 256 (1991) 17–21.

[8] B. K. Darian and H. P. Kunzle, Cosmological Einstein Yang-Mills equations, J. Math. Phys. 38

(1997) 4696–4713, [gr-qc/9610026].

[9] A. Maleknejad and M. M. Sheikh-Jabbari, Gauge-flation: Inflation From Non-Abelian Gauge

Fields, Phys. Lett. B 723 (2013) 224–228, [arXiv:1102.1513].

[10] A. Maleknejad, M. M. Sheikh-Jabbari, and J. Soda, Gauge Fields and Inflation, Phys. Rept.

528 (2013) 161–261, [arXiv:1212.2921].

[11] C. Armendariz-Picon, Could dark energy be vector-like?, JCAP 07 (2004) 007,

[astro-ph/0405267].

[12] S. Endlich, A. Nicolis, and J. Wang, Solid Inflation, JCAP 10 (2013) 011, [arXiv:1210.0569].

[13] M. Bucher and D. N. Spergel, Is the dark matter a solid?, Phys. Rev. D 60 (1999) 043505,

[astro-ph/9812022].

[14] A. Gruzinov, Elastic inflation, Phys. Rev. D 70 (2004) 063518, [astro-ph/0404548].

[15] F. Piazza, D. Pirtskhalava, R. Rattazzi, and O. Simon, Gaugid inflation, JCAP 11 (2017) 041,

[arXiv:1706.03402].

[16] A. Nicolis, R. Penco, F. Piazza, and R. Rattazzi, Zoology of condensed matter: Framids,

ordinary stuff, extra-ordinary stuff, JHEP 06 (2015) 155, [arXiv:1501.03845].

[17] J. Kang and A. Nicolis, Platonic solids back in the sky: Icosahedral inflation, JCAP 03 (2016)

050, [arXiv:1509.02942].

[18] E. Cremmer and J. Scherk, Spontaneous dynamical breaking of gauge symmetry in dual models,

Nucl. Phys. B 72 (1974) 117–124.

[19] J. A. Stein-Schabes and M. Gleiser, Einstein-Kalb-Ramond Cosmology, Phys. Rev. D 34 (1986)

3242.

[20] E. J. Copeland, A. Lahiri, and D. Wands, String cosmology with a time dependent

antisymmetric tensor potential, Phys. Rev. D 51 (1995) 1569–1576, [hep-th/9410136].

[21] E. Elizalde, S. D. Odintsov, T. Paul, and D. S´aez-Chill´on G´omez, Inflationary universe in

F (R) gravity with antisymmetric tensor fields and their suppression during its evolution, Phys.

Rev. D 99 (2019), no. 6 063506, [arXiv:1811.02960].

[22] T. L. Curtright and P. G. O. Freund, Massive dual fields, Nucl. Phys. B 172 (1980) 413–424.

– 50 –

[23] Y. Matsuo and A. Sugamoto, Note on a description of a perfect fluid by the Kalb–Ramond

field, PTEP 2021 (2021), no. 12 12C104.

[24] B. Horn, A. Nicolis, and R. Penco, Effective string theory for vortex lines in fluids and

superfluids, JHEP 10 (2015) 153, [arXiv:1507.05635].

[25] N. Arkani-Hamed, H.-C. Cheng, M. A. Luty, and S. Mukohyama, Ghost condensation and a

consistent infrared modification of gravity, JHEP 05 (2004) 074, [hep-th/0312099].

[26] N. Arkani-Hamed, P. Creminelli, S. Mukohyama, and M. Zaldarriaga, Ghost inflation, JCAP

04 (2004) 001, [hep-th/0312100].

[27] E. Babichev, Formation of caustics in k-essence and Horndeski theory, JHEP 04 (2016) 129,

[arXiv:1602.00735].

[28] E. Babichev and S. Ramazanov, Caustic free completion of pressureless perfect fluid and

k-essence, JHEP 08 (2017) 040, [arXiv:1704.03367].

[29] E. Babichev, S. Ramazanov, and A. Vikman, Recovering P (X) from a canonical complex field,

JCAP 11 (2018) 023, [arXiv:1807.10281].

[30] S. Mizuno, S. Mukohyama, S. Pi, and Y.-L. Zhang, Hyperbolic field space and swampland

conjecture for DBI scalar, JCAP 09 (2019) 072, [arXiv:1905.10950].

[31] S. Mukohyama and R. Namba, Partial UV Completion of P (X) from a Curved Field Space,

JCAP 02 (2021) 001, [arXiv:2010.09184].

[32] K. Aoki, S. Mukohyama, and R. Namba, Positivity vs. Lorentz-violation: an explicit example,

JCAP 10 (2021) 079, [arXiv:2107.01755].

[33] S. Dubovsky, T. Gregoire, A. Nicolis, and R. Rattazzi, Null energy condition and superluminal

propagation, JHEP 03 (2006) 025, [hep-th/0512260].

[34] B. Carter, Axionic vorticity variational formulation for relativistic perfect fluids, Class. Quant.

Grav. 11 (1994) 2013–2030.

[35] B. Carter and D. Langlois, Kalb-Ramond coupled vortex fibration model for relativistic

superfluid dynamics, Nucl. Phys. B 454 (1995) 402–424, [hep-th/9611082].

[36] S. Garcia-Saenz, E. Mitsou, and A. Nicolis, A multipole-expanded effective field theory for

vortex ring-sound interactions, JHEP 02 (2018) 022, [arXiv:1709.01927].

[37] E. Pajer and D. Stefanyszyn, Symmetric Superfluids, JHEP 06 (2019) 008,

[arXiv:1812.05133].

[38] N. Afshordi, D. J. H. Chung, and G. Geshnizjani, Cuscuton: A Causal Field Theory with an

Infinite Speed of Sound, Phys. Rev. D 75 (2007) 083513, [hep-th/0609150].

[39] H. Gomes and D. C. Guariento, Hamiltonian analysis of the cuscuton, Phys. Rev. D 95 (2017),

no. 10 104049, [arXiv:1703.08226].

[40] M. Born and L. Infeld, Foundations of the new field theory, Proc. Roy. Soc. Lond. A 144

(1934), no. 852 425–451.

[41] C. Cheung, P. Creminelli, A. L. Fitzpatrick, J. Kaplan, and L. Senatore, The Effective Field

Theory of Inflation, JHEP 03 (2008) 014, [arXiv:0709.0293].

[42] K. Aoki, M. A. Gorji, S. Mukohyama, and K. Takahashi, The effective field theory of

vector-tensor theories, JCAP 01 (2022), no. 01 059, [arXiv:2111.08119].

[43] K. Aoki, M. A. Gorji, S. Mukohyama, and K. Takahashi, Effective Field Theory of Gravitating

Continuum: Solids, Fluids, and Aether Unified, arXiv:2204.06672.

[44] H. Motohashi, T. Suyama, and K. Takahashi, Fundamental theorem on gauge fixing at the

action level, Phys. Rev. D 94 (2016), no. 12 124021, [arXiv:1608.00071].

– 51 –

[45] J. A. R. Cembranos, C. Hallabrin, A. L. Maroto, and S. J. N. Jareno, Isotropy theorem for

cosmological vector fields, Phys. Rev. D 86 (2012) 021301, [arXiv:1203.6221].

[46] J. A. R. Cembranos, A. L. Maroto, and S. J. N´

un

˜ez Jare˜

no, Isotropy theorem for cosmological

Yang-Mills theories, Phys. Rev. D 87 (2013), no. 4 043523, [arXiv:1212.3201].

[47] J. A. R. Cembranos, A. L. Maroto, and S. J. N´

un

˜ez Jare˜

no, Isotropy theorem for arbitrary-spin

cosmological fields, JCAP 03 (2014) 042, [arXiv:1311.1402].

[48] J. Beltr´

an Jim´enez, J. M. Ezquiaga, and L. Heisenberg, Probing cosmological fields with

gravitational wave oscillations, JCAP 04 (2020) 027, [arXiv:1912.06104].

[49] J. M. Ezquiaga, W. Hu, M. Lagos, and M.-X. Lin, Gravitational wave propagation beyond

general relativity: waveform distortions and echoes, JCAP 11 (2021), no. 11 048,

[arXiv:2108.10872].

[50] R. R. Caldwell, C. Devulder, and N. A. Maksimova, Gravitational wave–Gauge field

oscillations, Phys. Rev. D 94 (2016), no. 6 063005, [arXiv:1604.08939].

[51] J. Beltr´

an Jim´enez and L. Heisenberg, Non-trivial gravitational waves and structure formation

phenomenology from dark energy, JCAP 09 (2018) 035, [arXiv:1806.01753].

[52] R. R. Caldwell and C. Devulder, Gravitational Wave Opacity from Gauge Field Dark Energy,

Phys. Rev. D 100 (2019), no. 10 103510, [arXiv:1802.07371].

[53] G. W. Horndeski, Conservation of Charge and the Einstein-Maxwell Field Equations, J. Math.

Phys. 17 (1976) 1980–1987.

[54] D. Yoshida, 2-form gauge theory dual to scalar-tensor theory, Phys. Rev. D 100 (2019) 084047,

[arXiv:1906.02462].

[55] K. Takahashi and D. Yoshida, Ghost-free resummation of gravitational interactions of a

two-form gauge field, Phys. Rev. D 101 (2020), no. 2 024049, [arXiv:1910.12508].

[56] D. Bettoni and S. Liberati, Dynamics of non-minimally coupled perfect fluids, JCAP 08 (2015)

023, [arXiv:1502.06613].

– 52 –

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る