リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Morphological, ecological, and molecular phylogenetic approaches reveal species boundaries and evolutionary history of Goodyera crassifolia (Orchidaceae, Orchidoideae) and its closely related taxa」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Morphological, ecological, and molecular phylogenetic approaches reveal species boundaries and evolutionary history of Goodyera crassifolia (Orchidaceae, Orchidoideae) and its closely related taxa

Suetsugu, Kenji Hirota, Shun K. Nakato, Narumi Suyama, Yoshihisa Serizawa, Shunsuke 神戸大学

2022.11.04

概要

Species delimitation within the genus Goodyera is challenging among closely related species, because of phenotypic plasticity, ecological variation, and hybridization that confound identification methods based solely on morphology. In this study, we investigated the identity of Goodyera crassifolia H.-J.Suh, S.-W.Seo, S.-H.Oh & T.Yukawa, morphologically similar to Goodyera schlechtendaliana Rchb.f. This recently described taxon has long been known in Japan as “Oh-miyama-uzura” or “Gakunan” and considered a natural hybrid of G. schlechtendaliana and G. similis Blume (= G. velutina Maxim. ex Regel). Because the natural hybrid between G. schlechtendaliana and G. similis was described as G. × tamnaensis N.S.Lee, K.S.Lee, S.H.Yeau & C.S.Lee before the description of G. crassifolia, the latter might be a synonym of G. × tamnaensis. Consequently, we investigated species boundaries and evolutionary history of G. crassifolia and its closely related taxa based on multifaceted evidence. Consequently, morphological examination enabled us to distinguish G. crassifolia from other closely related species owing to the following characteristics: coriaceous leaf texture, laxly flowered inflorescence, long pedicellate ovary, large and weakly opened flowers, and column with lateral appendages. Ecological investigation indicates that G. crassifolia (2n = 60) is agamospermous, requiring neither pollinators nor autonomous self-pollination for fruit set, whereas G. schlechtendaliana (2n = 30) is neither autogamous nor agamospermous but is obligately pollinator-dependent. MIG-seq-based phylogenetic analysis provided no evidence of recent hybridization between G. crassifolia and its close congeners. Thus, molecular phylogeny reconstructed from MIG-seq data together with morphological, cytological, and ecological analyses support the separation of G. crassifolia as an independent species.

この論文で使われている画像

参考文献

Akiyama K (2010) A putative hybrid between Goodyera schlechtendaliana and G. velutina. Flora Kanagawa 71: 862–863. [In Japanese]

Baldwin BG, Sanderson MJ, Porter JM, Wojciechowski MF, Campbell CS, Donoghue MJ (1995) The ITS region of nuclear ribosomal DNA: A valuable source of evidence on angio- sperm phylogeny. Annals of the Missouri Botanical Garden 82(2): 247–277. https://doi. org/10.2307/2399880

Barrett CF, Freudenstein JV (2011) An integrative approach to delimiting species in a rare but widespread mycoheterotrophic orchid. Molecular Ecology 20(13): 2771–2786. https:// doi.org/10.1111/j.1365-294X.2011.05124.x

Barrett CF, Santee MV, Fama NM, Freudenstein JV, Simon SJ, Sinn BT (2022) Lineage and role in integrative taxonomy of a heterotrophic orchid complex. Molecular Ecology 31(18): 4762–4781. https://doi.org/10.1111/mec.16617

Bhattacharjee A, Chowdhery HJ (2012) Notes on two species of Goodyera (Orchidaceae). Kew Bulletin 67(3): 503–510. https://doi.org/10.1007/s12225-012-9388-y

Botes C, van der Niet T, Cowling RM, Johnson SD (2020) Is biodiversity underestimated by classical herbarium-based taxonomy? A multi-disciplinary case study in Satyrium (Orchidaceae). Botanical Journal of the Linnean Society 194(3): 342–357. https://doi. org/10.1093/botlinnean/boaa041

Campacci TVS, Castanho CT, Oliveira RLF, Suzuki RM, Catharino ELM, Koehler S (2017) Effects of pollen origin on apomixis in Zygopetalum mackayi orchids. Flora 226: 96–103. https://doi.org/10.1016/j.flora.2016.11.013

Catling PM (1982) Breeding systems of northeastern North American Spiranthes (Orchidace- ae). Canadian Journal of Botany 60(12): 3017–3039. https://doi.org/10.1139/b82-358

Catling PM, Brown JR (1983) Morphometrics and ecological isolation in sympatric Spiranthes (Orchidaceae) in southwestern Ontario. Canadian Journal of Botany 61(10): 2747–2759. https://doi.org/10.1139/b83-302

Causier B, Schwarz-Sommer Z, Davies B (2010) Floral organ identity: 20 years of ABCs. Seminars in Cell & Developmental Biology 21(1): 73–79. https://doi.org/10.1016/j.semcdb.2009.10.005

Coyne JA, Orr HA (2004) Speciation. Sinauer Associates, Sunderland, MA, 545 pp.

Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources 4(2): 359–361. https://doi.org/10.1007/s12686-011-9548-7

Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Molecular Ecology 14(8): 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x

Govaerts R, Bernet P, Kratochvil K, Gerlach G, Carr G, Alrich P, Pridgeon A, Pfahl J, Campacci M, Holland Baptista D, Tigges H, Shaw J, Cribb P, George A, Kreuz K, Wood J (2022) World Checklist of Orchidaceae. http://wcsp.science.kew.org/ [October 3, 2022]

Guan QX, Chen GZ, Li MH, Chen SP (2014) Goodyera malipoensis (Cranichideae, Orchi- daceae), a new species from China: Evidence from morphological and molecular analyses. Phytotaxa 186(1): 51–60. https://doi.org/10.11646/phytotaxa.186.1.4

Hedrén M, Lorenz R, Teppner H, Dolinar B, Giotta C, Griebl N, Hansson S, Heidtke U, Klein E, Perazza G, Ståhlberg D, Surina B (2018) Evolution and systematics of polyploid Nigritella (Orchidaceae). Nordic Journal of Botany 36(3): njb-01539. https://doi. org/10.1111/njb.01539

Hirano T, Saito T, Tsunamoto Y, Koseki J, Prozorova L, Do VT, Matsuoka K, Nakai K, Suyama Y, Chiba S (2019) Role of ancient lakes in genetic and phenotypic diversification of fresh- water snails. Molecular Ecology 28(23): 5032–5051. https://doi.org/10.1111/mec.15272 Hsu H-F, Hsu W-H, Lee Y-I, Mao W-T, Yang J-Y, Li J-Y, Yang C-H (2015) Model for perianth formation in orchids. Nature Plants 1(5): 15046. https://doi.org/10.1038/nplants.2015.46 Hsu H-F, Chen W-H, Shen Y-H, Hsu W-H, Mao W-T, Yang C-H (2021) Multifunctional evolution of B and AGL6 MADS box genes in orchids. Nature Communications 12(1): 902. https://doi.org/10.1038/s41467-021-21229-w

Hu C, Tian H, Li H, Hu A, Xing F, Bhattacharjee A, Hsu T, Kumar P, Chung S (2016) Phylogenetic analysis of a ‘jewel orchid’ genus Goodyera (Orchidaceae) based on DNA sequence data from nuclear and plastid regions. PLoS ONE 11(2): e0150366. https://doi. org/10.1371/journal.pone.0150366

Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary stud- ies. Molecular Biology and Evolution 23(2): 254–267. https://doi.org/10.1093/molbev/ msj030

Kallunki JA (1976) Population studies in Goodyera (Orchidaceae) with emphasis on the hybrid origin of G. tesselata. Brittonia 28(1): 53–75. https://doi.org/10.2307/2805559

Kallunki JA (1981) Reproductive biology of mixed-species populations of Goodyera (Orchidaceae) in northern Michigan. Brittonia 33(2): 137–155. https://doi.org/10.2307/2806308

Köhler C, Scheid OM, Erilova A (2010) The impact of the triploid block on the origin and evo- lution of polyploid plants. Trends in Genetics 26(3): 142–148. https://doi.org/10.1016/j. tig.2009.12.006

Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I (2015) CLUMPAK: A program for identifying clustering modes and packaging population structure inferences across K. Molecular Ecology Resources 15(5): 1179–1191. https://doi.org/10.1111/1755- 0998.12387

Lee CS, Yeau SH, Lee KS, Lee NS (2010) A new taxon of Goodyera (Orchidaceae): G. × tamnaensis. Korean Journal of Plant Taxonomy 40(4): 251–254. https://doi.org/10.11110/ kjpt.2010.40.4.251

Lee CS, Kim S-C, Yeau SH, Lee NS (2012) Nuclear and cpDNA sequences demonstrate spon- taneous hybridization between Goodyera schlechtendaliana Rchb. f. and G. velutina Max- im. (Orchidaceae) in Jeju Island, Korea. Systematic Botany 37(2): 356–364. https://doi. org/10.1600/036364412X635421

Matsuura O, Nakahira R (1958) Chromosome numbers of the family orchidaceae in Japan (1). The Scientific Reports of Kyoto Prefectural University 2: 23–30.

Naumova TN (2018) Apomixis in angiosperms: nucellar and integumentary embryony. CRC press, Boca Raton, 152 pp. Oh S-H, Suh H-J, Seo S-W, Chung K-S, Yukawa T (2022) A new species of Goodyera (Orchi- daceae: Orchidoideae) from Korea and Japan. Journal of Plant Biology 65(5): 357–363. https://doi.org/10.1007/s12374-022-09358-1

Pace MC (2020) A recircumscription of Goodyera (Orchidaceae), including the description of Paorchis gen. nov., and resurrection of Cionisaccus, Eucosia, and Salacistis. Brittonia 72(3): 257–267. https://doi.org/10.1007/s12228-020-09623-y

Pridgeon AM, Cribb PJ, Chase MW, Rasmussen FN (2003) Genera Orchidacearum 3. Orchidoideae (part 2), Vanilloideae. Oxford University Press, Oxford, 358 pp.

Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2): 945–959. https://doi.org/10.1093/genet- ics/155.2.945

Ramsey J, Schemske DW (1998) Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annual Review of Ecology and Systematics 29(1): 467–501. https://doi. org/10.1146/annurev.ecolsys.29.1.467

Rochette NC, Rivera-Colón AG, Catchen JM (2019) Stacks 2: Analytical methods for paired- end sequencing improve RADseq-based population genomics. Molecular Ecology 28(21): 4737–4754. https://doi.org/10.1111/mec.15253

Schumer M, Rosenthal GG, Andolfatto P (2014) How common is homoploid hybrid specia- tion? Evolution 68(6): 1553–1560. https://doi.org/10.1111/evo.12399

Sera T (1990) Karyomorphological studies on Goodyera and its allied genera in Orchidaceae. Bulletin of the Hiroshima Botanical Garden 12: 71–144.

Serizawa S (2008) A new Goodyera species discovered in several swamps in Aichi Prefecture, Honshu, Japan. Proceedings of the Annual Meeting of the Japanese Society for Plant Sys- tematics 7: 83. [In Japanese]

Shin K-S, Shin YK, Kim J-H, Tae K-H (2002) Phylogeny of the genus Goodyera (Orchidaceae; Cranichideae) in Korea based on nuclear ribosomal DNA ITS region sequences. Journal of Plant Biology 45(3): 182–187. https://doi.org/10.1007/BF03030312

Shoji T (1963) Cytological studies on Orchidaceae, II. Chromosome numbers and karyotypes of six Japanese species. La Kromosomo 55: 1823–1828.

Stamatakis A (2014) RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9): 1312–1313. https://doi.org/10.1093/bioinfor- matics/btu033

Suetsugu K, Hayakawa H (2019) A new variety of Goodyera schlechtendaliana (Orchidaceae) from Yakushima and Okinawa, Japan. Acta Phytotaxonomica et Geobotanica 70: 49–55.

Suetsugu K, Shitara T, Nakato N, Ishida K, Hayakawa H (2019) First record of Goodyera × maximo- velutina (Orchidaceae) from Kozu Island, Japan. Taiwania 64: 347–352.

Suetsugu K, Hirota SK, Suyama Y (2021a) A new natural hybrid, Goodyera ×tanakae (Orchi- daceae) from Japan with a discussion on the taxonomic identities of G. foliosa, G. sonoharae, G. velutina, G. ×maximo-velutina and G. henryi, based on morphological and molecular data. Taiwania 66: 277–286.

Suetsugu K, Hirota SK, Suyama Y (2021b) First record of Goodyera × tamnaensis (Orchidaceae) from Boso Peninsula, Chiba Prefecture, Japan, based on morphological and molecular data. Taiwania 66: 113–120.

Suetsugu K, Fukushima K, Makino T, Ikematsu S, Sakamoto T, Kimura S (2022) Transcrip- tomic heterochrony and completely cleistogamous flower development in the mycohet- erotrophic orchid Gastrodia. New Phytologist: nph.18495. https://doi.org/10.1111/ nph.18495

Sun B-Y, Park J-H, Kwak M-J, Kim C-H, Kim K-S (1996) Chromosome counts from the flora of Korea with emphasis on Apiaceae. Journal of Plant Biology 39: 15–22.

Suyama Y, Matsuki Y (2015) MIG-seq: An effective PCR-based method for genome-wide sin- gle-nucleotide polymorphism genotyping using the next-generation sequencing platform. Scientific Reports 5(1): 16963. https://doi.org/10.1038/srep16963

Suyama Y, Hirota SK, Matsuo A, Tsunamoto Y, Mitsuyuki C, Shimura A, Okano K (2022) Complementary combination of multiplex high-throughput DNA sequencing for mo- lecular phylogeny. Ecological Research 37(1): 171–181. https://doi.org/10.1111/1440- 1703.12270

Tae KH, Lee EH, Ko SC (1997) A systematic study of the genus Goodyera in Korea by mor- phological and cytological characters. Korean Journal of Plant Taxonomy 27(1): 89–116. https://doi.org/10.11110/kjpt.1997.27.1.089

Takahashi K (1985) Interesting Wild Orchid. The Mainichi Newspapers Co., Ltd., Tokyo, 176 pp. [In Japanese]

Tamaki I, Yoichi W, Matsuki Y, Suyama Y, Mizuno M (2017) Inconsistency between morpho- logical traits and ancestry of individuals in the hybrid zone between two Rhododendron japonoheptamerum varieties revealed by a genotyping-by-sequencing approach. Tree Genet- ics & Genomes 13(1): 1–10. https://doi.org/10.1007/s11295-016-1084-x

Tanaka R (1965) Chromosome numbers of some species of Orchidaceae from Japan and its neighbouring areas. Shokubutsu Kenkyu Zasshi 40: 54–77.

The Flora-Kanagawa Association (2018) Flora of Kanagawa 2018. The Flora-Kanagawa As- sociation, Odawara, 335 pp.

Thiers B (2022) Index Herbariorum, New York Botanical Garden. http://sweetgum.nybg.org/ science/ih/ [October 6, 2022]

Yoichi W, Kawamata I, Matsuki Y, Suyama Y, Uehara K, Ito M (2018) Phylogeographic analy- sis suggests two origins for the riparian azalea Rhododendron indicum (L.) Sweet. Heredity 121(6): 594–604. https://doi.org/10.1038/s41437-018-0064-3

参考文献をもっと見る