リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Assessment of the upper limb muscles in patients with Fukuyama muscular dystrophy: Noninvasive assessment using visual ultrasound muscle analysis and shear wave elastography」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Assessment of the upper limb muscles in patients with Fukuyama muscular dystrophy: Noninvasive assessment using visual ultrasound muscle analysis and shear wave elastography

Harada, Risa Taniguchi-Ikeda, Mariko Nagasaka, Miwako Nishii, Tatsuya Inui, Atsuyuki Yamamoto, Tetsushi Morioka, Ichiro Kuroda, Ryosuke Iijima, Kazumoto Nozu, Kandai Sakai, Yoshitada Toda, Tatsushi 神戸大学

2022.09

概要

Fukuyama-type congenital muscular dystrophy (FCMD) is severe, childhood-onset muscular dystrophy. Recently, our group has discovered a potential treatment using antisense oligonucleotides. Therefore, an effective, reliable, and objective method of assessing muscle is needed. Ultrasound is a minimally invasive tool that can be applied without radiation exposure or pain. Evaluating tissue stiffness by shear wave elastography (SWE) has especially recently attracted attention. Here, we aimed to evaluate SWE value of the upper limb muscles: biceps brachii, triceps brachii, brachioradialis, abductor pollicis brevis, and abductor finger muscle in patients with FCMD. Upper extremity function was evaluated by visual muscle ultrasound analysis (VMUA) and SWE in 13 patients with FCMD and 20 healthy controls. The motor function evaluation tool was used to evaluate motor function, and the correlation with the dynamics of the SWE was determined. VMUA scaled using the Heckmatt scale was higher in patients with FCMD. SWE was also significantly higher and stiffer in the biceps brachii and brachioradialis in patients with FCMD. Furthermore, the severity of FCMD symptoms was correlated with muscle stiffness. We conclude that VMUA and SWE can be useful tools for monitoring muscle atrophy and upper limb function in patients with FCMD.

この論文で使われている画像

関連論文

参考文献

[1] Fukuyama Y, Osawa M, Suzuki H. Congenital progressive muscular dystrophy of the Fukuyama type - clinical, genetic and pathological considerations. Brain & Development 1981;3:1–29.

[2] Osawa M, Arai Y, Ikenaka H, Murasugi H, Sugahara N, Sumida S, et al. Fukuyama type congenital progressive muscular dystrophy. Acta Paediatrica Japonica: Overseas edition 1991;33:261–9.

[3] Kobayashi K, Nakahori Y, Miyake M, Matsumura K, Kondo-Iida E, Nomura Y, et al. An ancient retrotransposal insertion causes Fukuyama-type congenital muscular dystrophy. Nature 1998;394:388–92.

[4] Takeda S.i., Miyagoe-Suzuki Y., Mori-Yoshimura M., Translational research in muscular dystrophy. viii, 199 pages.

[5] Sato T, Adachi M, Nakamura K, Zushi M, Goto K, Murakami T, et al. The gross motor function measure is valid for Fukuyama congenital muscular dystrophy. Neuromuscul Disord 2017;27:45–9.

[6] Fleckenstein JL, Watumull D, Conner KE, Ezaki M, Greenlee RG Jr, Bryan WW, et al. Denervated human skeletal muscle: MR imaging evaluation. Radiology 1993;187:213–18.

[7] May DA, Disler DG, Jones EA, Balkissoon AA, Manaster BJ. Abnormal signal intensity in skeletal muscle at MR imaging: patterns, pearls, and pitfalls, 20. Radiographics: a review publication of the Radiological Society of North America, Inc; 2000. Spec No:S295-315.

[8] Janssen B, Voet N, Geurts A, van Engelen B, Heerschap A. Quantitative MRI reveals decelerated fatty infiltration in muscles of active FSHD patients. Neurology 2016;86:1700–7.

[9] Burakiewicz J, Sinclair CDJ, Fischer D, Walter GA, Kan HE, Hollingsworth KG. Quantifying fat replacement of muscle by quantitative MRI in muscular dystrophy. Journal of Neurology 2017;264:2053–67.

[10] Helmy H, Aboumousa A, Abdelmagied A, Alsayyad A, Nasr SA. The role of muscle ultrasound in helping the clinical diagnosis of muscle diseases. The Egyptian journal of neurology. psychiatry and neurosurgery 2018;54:29.

[11] Janssen BH, Pillen S, Voet NB, Heerschap A, van Engelen BG, van Alfen N. Quantitative muscle ultrasound versus quantitative magnetic resonance imaging in facioscapulohumeral dystrophy. Muscle & Nerve 2014;50:968–75.

[12] Reeves ND, Maganaris CN, Narici MV. Ultrasonographic assessment of human skeletal muscle size. European Journal of Applied Physiology 2004;91:116–18.

[13] Watanabe Y, Ikenaga M, Yoshimura E, Yamada Y, Kimura M. Association between echo intensity and attenuation of skeletal muscle in young and older adults: a comparison between ultrasonography and computed tomography. Clinical interventions in aging 2018;13:1871–8.

[14] Pillen S, Arts IM, Zwarts MJ. Muscle ultrasound in neuromuscular disorders. Muscle & Nerve 2008;37:679–93.

[15] Muthupillai R, Ehman RL. Magnetic resonance elastography. Nature Medicine 1996;2:601–3.

[16] Klauser AS, Miyamoto H, Bellmann-Weiler R, Feuchtner GM, Wick MC, Jaschke WR. Sonoelastography: musculoskeletal applications. Radiology 2014;272:622–33.

[17] Eby SF, Song P, Chen S, Chen Q, Greenleaf JF, An KN. Validation of shear wave elastography in skeletal muscle. Journal of biomechanics 2013;46:2381–7.

[18] Brandenburg JE, Eby SF, Song P, Zhao H, Brault JS, Chen S, et al. Ultrasound elastography: the new frontier in direct measurement of muscle stiffness. Archives of physical medicine and rehabilitation 2014;95:2207–19.

[19] Lacourpaille L, Hug F, Bouillard K, Hogrel JY, Nordez A. Supersonic shear imaging provides a reliable measurement of resting muscle shear elastic modulus. Physiological measurement 2012;33:N19–28.

[20] Taljanovic MS, Gimber LH, Becker GW, Latt LD, Klauser AS, Melville DM, et al. Shear-Wave Elastography: Basic Physics and Musculoskeletal Applications. Radiographics: a review publication of the Radiological Society of North America, Inc 2017;37:855–70.

[21] Kwon DR, Park GY, Lee SU, Chung I. Spastic cerebral palsy in children: dynamic sonoelastographic findings of medial gastrocnemius. Radiology 2012;263:794–801.

[22] Lacourpaille L, Hug F, Guevel A, Pereon Y, Magot A, Hogrel JY, et al. Non-invasive assessment of muscle stiffness in patients with Duchenne muscular dystrophy. Muscle & Nerve 2015;51:284–6.

[23] Kondo-Iida E, Kobayashi K, Watanabe M, Sasaki J, Kumagai T, Koide H, et al. Novel mutations and genotype-phenotype relationships in 107 families with Fukuyama-type congenital muscular dystrophy (FCMD). Human Molecular Genetics 1999;8:2303–9.

[24] Russell DJ, Rosenbaum PL, Cadman DT, Gowland C, Hardy S, Jarvis S. The gross motor function measure: a means to evaluate the effects of physical therapy. Developmental Medicine and Child Neurology 1989;31:341–52.

[25] Main M, Kairon H, Mercuri E, Muntoni F. The Hammersmith functional motor scale for children with spinal muscular atrophy: a scale to test ability and monitor progress in children with limited ambulation. European Journal of Paediatric Neurology 2003;7:155–9.

[26] Heckmatt JZ, Dubowitz V. Ultrasound imaging and directed needle biopsy in the diagnosis of selective involvement in muscle disease. Journal of Child Neurology 1987;2:205–13.

[27] Olchowy C, Olchowy A, Pawlus A, Wieckiewicz M, Sconfienza LM. Stiffness of the Masseter Muscle in Children-Establishing the Reference Values in the Pediatric Population Using Shear-Wave Elastography. International journal of environmental research and public health 2021;18.

[28] Berko NS, Hay A, Sterba Y, Wahezi D, Levin TL. Efficacy of ultrasound elastography in detecting active myositis in children: can it replace MRI? Pediatric Radiology 2015;45:1522–8.

[29] Ferraioli G, Filice C, Castera L, Choi BI, Sporea I, Wilson SR, et al. WFUMB guidelines and recommendations for clinical use of ultrasound elastography: Part 3: liver. Ultrasound in Medicine & Biology 2015;41:1161–79.

[30] Harmon B, Wells M, Park D, Gao J. Ultrasound elastography in neuromuscular and movement disorders. Clinical Imaging 2019;53:35–42.

[31] Pillen S, Tak RO, Zwarts MJ, Lammens MM, Verrijp KN, Arts IM, et al. Skeletal muscle ultrasound: correlation between fibrous tissue and echo intensity. Ultrasound in Medicine & Biology 2009;35:443–6.

[32] Reimers K, Reimers CD, Wagner S, Paetzke I, Pongratz DE. Skeletal muscle sonography: a correlative study of echogenicity and morphology. Journal of ultrasound in medicine: official journal of the American Institute of Ultrasound in Medicine 1993;12:73–7.

[33] Zaidman CM, Wu JS, Kapur K, Pasternak A, Madabusi L, Yim S, et al. Quantitative muscle ultrasound detects disease progression in Duchenne muscular dystrophy. Annals of Neurology 2017;81:633–40.

[34] Mul K, Horlings CGC, Vincenten SCC, Voermans NC, van Engelen BGM, van Alfen N. Quantitative muscle MRI and ultrasound for facioscapulohumeral muscular dystrophy: complementary imaging biomarkers. Journal of Neurology 2018;265:2646–55.

[35] Eby SF, Cloud BA, Brandenburg JE, Giambini H, Song P, Chen S, et al. Shear wave elastography of passive skeletal muscle stiffness: influences of sex and age throughout adulthood. Clinical biomechanics 2015;30:22–7.

[36] Taniguchi M, Kurahashi H, Noguchi S, Fukudome T, Okinaga T, Tsukahara T, et al. Aberrant neuromuscular junctions and delayed terminal muscle fiber maturation in alpha-dystroglycanopathies. Human molecular genetics 2006;15:1279–89.

[37] Taniguchi-Ikeda M, Kobayashi K, Kanagawa M, Yu CC, Mori K, Oda T, et al. Pathogenic exon-trapping by SVA retrotransposon and rescue in Fukuyama muscular dystrophy. Nature 2011;478:127–31.

参考文献をもっと見る