リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Rabbit model with vocal fold hyperadduction<Abstract of dissertation>」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Rabbit model with vocal fold hyperadduction

Naoki Takemoto 80851766 竹本 直樹 名古屋市立大学

2022.03.24

概要

Objective:
Adductor spasmodic dysphonia (AdSD) is caused by hyperadduction of intralaryngeal muscles and glottal closure blocks the expiratory airflow during phonation. This makes the voice strained and choked, thus resulting in voice breaks. Animal models are not yet used to elucidate this intractable disease because AdSD has a difficult pathology without a definitive origin. For the first step, we established an animal model with vocal fold hyperadduction and evaluated its validity by assessing laryngeal function.

Methods:
In this experimental animal study, three adult Japanese 20-week-old rabbits were used. The models were created using a combination of cricothyroid approximation, forced airflow, and electrical stimulation of the recurrent laryngeal nerves (RLNs). Cricothyroid approximation was added to produce a glottal slit. Thereafter, both RLNs were electrically stimulated to induce vocal fold hyperadduction. Finally, the left RLN was transected to relieve hyperadduction. The sound, endoscopic images, and subglottal pressure were recorded, and acoustic analysis was performed.

Results:
Subglottal pressure increased significantly, and the strained sound was produced after the electrical stimulation of the RLNs. After transecting the left RLN, the subglottal pressure decreased significantly, and the strained sound decreased. Acoustic analysis revealed an elevation of the standard deviation of F0 (SDF0) and degree of voice breaks (DVB) through stimulation of the RLNs, and degradation of SDF0 and DVB through RLN transection. Formant bands in the sound spectrogram were interrupted by the stimulation and appeared again after the RLN section.

Conclusion:
This study developed a rabbit model with vocal fold hyperadduction . The subglottal pressure and acoustic analysis of this model resembled the characteristics of patients with AdSD. This model could be helpful to elucidate the pathology of the larynx caused by hyperadduction, and evaluate and compare the treatments for strained phonation.

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る