リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Development of Real-time Visual Observation and Spectrophotometric Measurement System for High-dose Gamma-ray Irradiation Effect」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Development of Real-time Visual Observation and Spectrophotometric Measurement System for High-dose Gamma-ray Irradiation Effect

LE VIET HUY 大阪府立大学 DOI:info:doi/10.24729/00017858

2022.11.28

概要

This thesis was conducted during October 2019 to June 2022 under the guidance of Professor Hiroyuki Miyamaru at the Division of Quantum and Radiation Engineering, Graduate School of Engineering, Osaka Prefecture University.

The thesis deals with a novel protocol to capture full information of irradiation effects in situ that used to identify the modes and kinetics of the evolution of materials in the high dose gamma-ray fields. A real-time measurement system was developed for investigating the optical property of specimen in wavelengths of visible light. Combination of direct visual observation and spectrophotometric measurement was implemented. This may uncover information that has not been accessible by conventional characterization techniques. ..

この論文で使われている画像

参考文献

Chapter 1

1) Murray L and Holbert K. Nuclear Energy (8th edition), Chapter 5: Radiation and materials, pp. 81-99, 2020. https://doi.org/10.1016/B978-0-12-812881-7.00005-8

2) Fabritsiev S. Fundamentals of Magnetic Thermonuclear Reactor Design, Chapter 13: Structural and functional materials: Selection criteria and radiation characteristics, pp. 387-400, 2018. https://doi.org/10.1016/B978-0-08-102470-6.00013-5

3) Wu G. Radiation Technology for Advanced Materials, Chapter 1: Radiation sources and radiation processing, pp. 1-11, 2019. https://doi.org/10.1016/B978-0-12-814017- 8.00001-9

4) Cameron A. The transformations of elements: Part I. Those detected by radioactive methods; with some account of the properties of these elements, so far as known. Science Progress in the Twentieth Century (1906-1916), Sage Publications, Ltd. Vol. 2, pp. 525-549, 1908.

5) Hatipoğlu M et al. Amethyst and morion quartz gemstone raw materials from Turkey: color saturation and enhancement by gamma, neutron and beta irradiation. Radiat Eff Defect S, Vol. 165, pp. 537-548, 2011. https://doi.org/10.1080/10420150.2010.489611

6) Maneewong A et al. Neutron-diffraction studies of the crystal structure and the color enhancement in γ-irradiated tourmaline. J Korean Phys Soc, Vol. 68, pp. 329-339, 2016. https://doi.org/10.3938/jkps.68.329

7) Omi N and Rela R. Gemstone dedicated gamma irradiator development. Associação Brasileira de Energia Nuclear, ISBN 978-85-99141-02-1, 2007.

8) Glenn F, “Radiation Spectroscopy with Scintillators” in Radiation Detection and Measurement (John Wiley & Sons, US, Ed. 4), 2010.

9) Flores G et al. Gamma-irradiation applied in the synthesis of metallic and organic nanoparticles: A short review. Radiat Phys Chem, Vol. 169, article 107962, 2020. https://doi.org/10.1016/j.radphyschem.2018.08.011

10) Messenger C, Ash S. The effects of radiation on electronic systems. United States: Van Nostrand Reinhold Co Inc, pp. 277, 1986. https://doi.org/10.1007/978-94-017-5355-5

11) Huston A et al. Remote optical fiber dosimetry. Nucl. Instrum. Meth. B, Vol. 184, pp. 55-67, 2001. https://doi.org/10.1016/S0168-583X(01)00713-3

12) Okamoto et al. Gamma-ray irradiation effects of CdS/CdTe photodiode for radiation tolerant FEA image sensor. 2018 31st International Vacuum Nanoelectronics Conference (IVNC), pp. 1-2, 2018. https://doi.org/10.1109/IVNC.2018.8520196

13) Gallagher R and Corak W. A metal oxide semiconductor (MOS) hall element. Solid- State Electronics, Vol. 9, pp. 571-580, 1966. https://doi.org/10.1016/0038-1101(66)90172-9

14) Wang C et al. Nuclear radiation degradation study on HD camera based on CMOS image sensor at different dose rates. Sensors, Vol. 18, pp. 5-14, 2018. https://doi.org/10.3390/s18020514

15) Mallakpour S and Azimi F. Layered double hydroxide polymer nanocomposites. Woodhead Publishing Series in Composites Science and Engineering, Chapter 6: Spectroscopic characterization techniques for layered double hydroxide polymer nanocomposites, pp. 231-280, 2020. https://doi.org/10.1016/B978-0-08-101903-0.00006-4

16) Swinehart D. The Beer-Lambert Law. J. Chem. Educ., Vol. 38, pp. 333, 1962. https://doi.org/10.1021/ed039p333

17) Eyring M. Encyclopedia of Physical Science and Technology (Third Edition), Spectroscopy in Forensic Science, pp. 637-643, 2003. https://doi.org/10.1016/B0-12- 227410-5/00957-1

18) Atef A, Arne M. Temperature, humidity and time. Combined effects on radiochromic film dosimeters. Radiat. Phys. Chem., Vol. 47, pp. 611-621, 1996. https://doi.org/10.1016/0969-806X(95)00037-X

Chapter 2

1) Deev S. The Use of Cadmium Sulphide Photo-Conductors in Radiation Dosimetry. J. Nucl. Energy. AB., Vol. 1, pp. 204-210, 1960. https://doi.org/10.1016/S0368-3273(15)30029-8

2) Rudolf F. The Photo-Conductivity of "Incomplete Phosphors". Phys. Rev., Vol. 72, pp. 594, 1947. https://doi.org/10.1103/PhysRev.72.594

3) Isshiki M, Wang J. II-IV Semiconductors for Optoelectronics: CdS, CdSe, CdTe. Springer Handbook of Electronic and Photonic Materials, 2017. https://doi.org/10.1007/978-3-319-48933-9_33

4) Ahmad O. X-ray Dosimetry Using a Cd Sulphide Photoresistor. Radiat. Phys. Chem., Vol. 44, pp. 61-62, 1994. https://doi.org/10.1016/0969-806X(94)90104-X

5) Park J et al. Characterization of CdS Photocells for Portable X-ray Dosimeters. J. Korean. Phys. Soc., Vol. 59, pp. 3636-3639, 2011. https://doi.org/10.3938/jkps.59.3636

6) Paul R, Edwin D. Resistive sensors. Sensors for Mechatronics (second edition), pp. 194, 2018. https://doi.org/10.1016/B978-0-12-813810-6.00007-0

7) Bitter R, Mohiuddin T, Nawrocki M. LabVIEW: Advanced programming techniques. Crc Press, 2006. https://doi.org/10.1201/9780849333255

8) Khan F, Gibbons J. Khan’s the Physics of Radiation Therapy fifth edition. Wolters Kluwer, pp. 99. 2014. ISBN 978-1-4511-8245-3.

9) Messenger C, Ash S. The Effects of Radiation on Electronic Systems. United States: Van Nostrand Reinhold Co Inc, pp. 277, 1986. https://doi.org/10.1007/978-94-017- 5355-5

10) Rasband S. ImageJ, U.S. National Institutes of Health, Bethesda, Maryland, USA, 1997–2012. imagej.nih.gov/ij/

11) Sato T et al. Features of Particle and Heavy Ion Transport Code System (PHITS) version 3.02. J. Nucl. Sci. Technol., Vol. 55, pp. 684-690, 2018. https://doi.org/10.1080/00223131.2017.1419890

12) Glenn F, “Radiation Spectroscopy with Scintillators” in Radiation Detection and Measurement (John Wiley & Sons, US, Ed. 4), pp. 354, 2010.

Chapter 3

1) Choi D et al. Effect of radiation on the transmission rate of emission intensity of optical fiber cable used in a nuclear material facility. Nucl. Technol, Vol. 197, pp. 320-328, 2017. https://doi.org/10.1080/00295450.2016.1273701

2) Huston A et al. Remote optical fiber dosimetry. Nucl. Instrum. Meth. B, Vol. 184, pp. 55-67, 2001. https://doi.org/10.1016/S0168-583X(01)00713-3

3) Casolaro P et al. Real-time dosimetry with radiochromic films. Sci. Rep, Vol. 9, Article 5307, 2019. https://doi.org/10.1038/s41598-019-41705-0

4) Miyamaru H et al. Development of intense gamma-ray source monitoring system in water. Progress in Nuclear Science and Technology (Conference series, Atomic Energy Society of Japan), Vol. 6, pp. 126-129, 2019. https://doi.org/10.15669/pnst.6.126

5) Toh K et al. Effects of neutrons and gamma-rays on polymethylmethacrylate plastic optical fiber. J. Nucl. Mater, Vol. 417, pp. 814-817, 2011. https://doi.org/10.1016/j.jnucmat.2010.12.258

6) Brichard et al. Radiation effect in silica optical fiber exposed to intense mixed neutron- gamma radiation field. IEEE T. Nucl. Sci, Vol. 48, pp. 2069-2073, 2002. https://doi.org/10.1109/23.983174

7) Wang C et al. Nuclear radiation degradation study on HD camera based on CMOS image sensor at different dose rates. Sensors, Vol. 18, pp. 5-14, 2018. https://doi.org/10.3390/s18020514

8) O'Keeffe S et al. A review of optical fibre radiation dosimeters. Sensor. Rev., Vol. 28, pp. 136-142, 2008. https://doi.org/10.1108/02602280810856705

9) Furuta J et al. On the new gamma-irradiation facility, annual report of the Radiation Center of Osaka Prefecture. Sakai, Osaka, Japan: Radiation Center of Osaka Prefecture, Vol. 10, pp. 65-70, 1970.

10) Rasband S. ImageJ, U.S. National Institutes of Health, Bethesda, Maryland, USA, 1997–2012. imagej.nih.gov/ij/

11) Sato T et al. Features of Particle and Heavy Ion Transport Code System (PHITS) version 3.02. J. Nucl. Sci. Technol., Vol. 55, pp. 684-690, 2018. https://doi.org/10.1080/00223131.2017.1419890

12) Pearton S et al. Review - Ionizing radiation damage effects on GaN devices. Ecs. J. Solid. State. Sc, Vol. 5, pp. 35-60, 2016. https://doi.org/10.1149/2.0251602jss

Chapter 4

1) Abedini A et al. A review on radiation-induced nucleation and growth of colloidal metallic nanoparticles. Nanoscale Res. Lett., Vol. 8, Article 474, 2013. https://doi.org/10.1186/1556-276X-8-474

2) Atwater H, Polman A. Plasmonics for improved photovoltaic devices. Nat Mater, Vol. 9, pp. 205-213, 2010. https://doi.org/10.1038/nmat2629

3) Ozbay E. Plasmonics: Merging photonics and electronics at nanoscale dimensions. Science, Vol. 311, pp. 189-193, 2006. https://doi.org/10.1126/science.1114849

4) Bharti A et al. Monochromatic X-ray induced novel synthesis of plasmonic nanostructure for photovoltaic application. Sci. Rep., Vol. 6, article 22394, 2016. https://doi.org/10.1038/srep22394

5) Qiu H et al. Nanoporous metal as a platform for electrochemical and optical sensing. J Mater Chem C, Vol. 2, pp. 9788-9799, 2014. https://doi.org/10.1039/C4TC01913J

6) Li J et al. Plasmon-enhanced fluorescence spectroscopy. Chem Soc Rev, Vol. 46, pp. 3962-3979, 2017. https://doi.org/10.1039/C7CS00169J

7) Bharti A et al. Surface plasmon band tailoring of plasmonic nanostructure under the effect of water radiolysis by synchrotron radiation. J. Synchrotron Rad, Vol. 24, pp. 1209–1217, 2017. https://doi.org/10.1107/S1600577517013169

8) Zhang X et al. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci, Vol. 17, pp. 1534, 2016. https://doi.org/10.3390/ijms17091534

9) Haes A et al. A nanoscale optical biosensor: Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J Am Chem Soc, Vol. 124, pp. 10596-10604, 2002. https://doi.org/10.1021/ja020393x

10) Dankovich T, Gray D. Bactericidal paper impregnated with silver nanoparticles for point-of-use water treatment. Environ Sci Technol, Vol. 45, pp. 1992-1998, 2011. https://doi.org/10.1021/es103302t

11) Flores G et al. Gamma-irradiation applied in the synthesis of metallic and organic nanoparticles: A short review. Radiat Phys Chem, Vol. 169, article 107962, 2020. https://doi.org/10.1016/j.radphyschem.2018.08.011

12) Rauf A, Salman S. Radiation induced degradation of dyes-An overview. J. Hazard. Mater., Vol. 166, pp. 6-16, 2009. https://doi.org/10.1016/j.jhazmat.2008.11.043

13) Khan I et al. Nanoparticles: Properties, applications and toxicities. Arab J Chem, Vol. 12, pp. 908-931, 2019. https://doi.org/10.1016/j.arabjc.2017.05.011

14) Wilhelm S et al. Analysis of nanoparticle delivery to tumours. Nat Rev Mater, Vol. 1, article 16014, 2016. https://doi.org/10.1038/natrevmats.2016.14

15) Caldorera-Moore M et al. Designer nanoparticles: Incorporating size, shape, and triggered release into nanoscale drug carriers. Expert Opin Drug Del, Vol. 7, pp. 479- 495, 2010. https://doi.org/10.1517/17425240903579971

16) Shin S et al. Mechanism of growth of colloidal silver nanoparticles stabilized by polyvinyl pyrrolidone in γ-irradiated silver nitrate solution. J. Colloid. Interface. Sci., Vol. 274, pp. 89-94, 2004. https://doi.org/10.1016/j.jcis.2004.02.084

17) Soliman S. Gamma-radiation induced synthesis of silver nanoparticles in gelatin and its application for radiotherapy dose measurements. Radiat. Phys. Chem., Vol. 102, pp. 60- 67, 2014. https://doi.org/10.1016/j.radphyschem.2014.04.023

18) Kazem N, Biswal J, Sabharwal S. Influence of dose on particle size of colloidal silver nanoparticles synthesized by gamma radiation. Radiat. Phys. Chem., Vol. 79, pp. 1203- 1208, 2010. https://doi.org/10.1016/j.radphyschem.2010.07.009

19) Ramnani S et al. Synthesis of silver nanoparticles supported on silica aerogel using gamma radiolysis. Radiat. Phys. Chem., Vol. 76, pp. 1290-1294, 2007. https://doi.org/10.1016/j.radphyschem.2007.02.074

20) Cuba V et al. Radiation formation of colloidal silver particles in aqueous systems. Appl. Radiat. Isotopes, Vol. 68, pp. 676-678, 2010. https://doi.org/10.1016/j.apradiso.2009.11.074

21) Rasband S. ImageJ, U.S. National Institutes of Health, Bethesda, Maryland, USA, 1997–2012. imagej.nih.gov/ij/

22) Oliveira G et al. RGB color sensor for colorimetric determinations: Evaluation and quantitative analysis of colored liquid samples. Talanta, Vol. 241, article 123244, 2022. https://doi.org/10.1016/j.talanta.2022.123244

23) Azar F et al. Degradation of erioglaucine dye under γ-irradiation. Procedia Chem., Vol. 7, pp. 647-653, 2012. https://doi.org/10.1016/j.proche.2012.10.098

24) Ershov B et al. Silver atoms and clusters in aqueous solution: absorption spectra and the particle growth in the absence of stabilizing Ag+ ions. J. Phys. Chem., Vol. 97, pp. 4589- 4594, 1993. https://doi.org/10.1021/j100120a006

25) Henglein A, Mulvaney P, Linnert T. Chemistry of silver aggregates in aqueous solution: non-metallic oligomers and metallic particles. Electrochim. Acta., Vol. 36, pp. 1743- 1745, 1991. https://doi.org/10.1016/0013-4686(91)85037-8

26) Gasaymeh S et al. Synthesis and characterization of Silver/Polyvinilpirrolidone (Ag/PVP) nanoparticles using gamma irradiation techniques. Am. J. Appl. Sci., Vol. 7, pp. 892-901, 2010. https://doi.org/10.3844/ajassp.2010.892.901

27) Maria D et al. Network structure studies on γ–irradiated collagen–PVP superabsorbent hydrogels. Radiat. Phys. Chem., Vol. 131, pp. 51-59, 2017. https://doi.org/10.1016/j.radphyschem.2016.09.029

28) Jin-Oh J et al. Gamma ray-induced polymerization and cross-linking for optimization of PPy/PVP hydrogel as biomaterial. Polymers-Basel, Vol. 12, pp. 111, 2019. https://doi.org/10.3390/polym12010111

29) Joshi S et al. Radiation induced synthesis and characterization of copper nanoparticles. Nanostruct Mater, Vol. 10, pp. 1135-1144, 1998. https://doi.org/10.1016/S0965-9773(98)00153-6

30) Yang Y et al. Gamma-radiation induced synthesis of freestanding nickel nanoparticles. Dalton T, Vol. 50, pp. 376-383, 2021. https://doi.org/10.1039/D0DT03223A

31) Mampallil D, Eral H. A review on suppression and utilization of the coffee-ring effect. Adv Colloid Interfac, Vol. 252, pp. 38-54, 2018. https://doi.org/10.1016/j.cis.2017.12.008

32) Hua H, Ronald G. Marangoni effect reverses coffee-ring depositions. J Phys Chem B, Vol. 110, pp. 7090-7094, 2006. https://doi.org/10.1021/jp0609232

33) Yunker P et al. Suppression of the coffee-ring effect by shape-dependent capillary interactions. Nature, Vol. 476, pp. 308-311, 2011. https://doi.org/10.1038/nature10344

参考文献をもっと見る