リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Octopus, a computational framework for exploring light-driven phenomena and quantum dynamics in extended and finite systems」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Octopus, a computational framework for exploring light-driven phenomena and quantum dynamics in extended and finite systems

佐藤, 駿丞 Tancogne-Dejean, Nicolas Oliveira, Micael J. T. Andrade, Xavier Appel, Heiko Borca, Carlos H. Le Breton, Guillaume Buchholz, Florian Castro, Alberto Corni, Stefano Correa, Alfredo A. De Giovannini, Umberto Delgado, Alain Eich, Florian G. Flick, Johannes Gil, Gabriel Gomez, Adrián Helbig, Nicole Hübener, Hannes Jestädt, René Jornet-Somoza, Joaquim Larsen, Ask H. Lebedeva, Irina V. Lüders, Martin Marques, Miguel A. L. Ohlmann, Sebastian T. Pipolo, Silvio Rampp, Markus Rozzi, Carlo A. Strubbe, David A. Schäfer, Christian Theophilou, Iris Welden, Alicia Rubio, Angel 筑波大学 DOI:32241132

2020.08.04

概要

Over the last few years, extraordinary advances in experimental and theoretical tools have allowed us to monitor and control matter at short time and atomic scales with a high degree of precision. An appealing and challenging route toward engineering materials with tailored properties is to find ways to design or selectively manipulate materials, especially at the quantum level. To this end, having a state-of-the-art ab initio computer simulation tool that enables a reliable and accurate simulation of light-induced changes in the physical and chemical properties of complex systems is of utmost importance. The first principles real-space-based Octopus project was born with that idea in mind, i.e., to provide a unique framework that allows us to describe non-equilibrium phenomena in molecular complexes, low dimensional materials, and extended systems by accounting for electronic, ionic, and photon quantum mechanical effects within a generalized time-dependent density functional theory. This article aims to present the new features that have been implemented over the last few years, including technical developments related to performance and massive parallelism. We also describe the major theoretical developments to address ultrafast light-driven processes, such as the new theoretical framework of quantum electrodynamics density-functional formalism for the description of novel light–matter hybrid states. Those advances, and others being released soon as part of the Octopus package, will allow the scientific community to simulate and characterize spatial and time-resolved spectroscopies, ultrafast phenomena in molecules and materials, and new emergent states of matter (quantum electrodynamical-materials).

この論文で使われている画像

参考文献

M. A. L. Marques, A. Rubio, E. K. Gross, K. Burke, F. Nogueira, and C. A. Ullrich,

Time-Dependent Density Functional Theory (Springer Science & Business Media,

2006), Vol. 706.

M. A. L. Marques, N. T. Maitra, F. M. Nogueira, E. K. Gross, and A. Rubio,

Fundamentals of Time-Dependent Density Functional Theory (Springer Science &

Business Media, 2012), Vol. 837.

T. W. Ebbesen, “Hybrid light–matter states in a molecular and material science

perspective,” Acc. Chem. Res. 49, 2403–2412 (2016).

M. Ruggenthaler, J. Flick, C. Pellegrini, H. Appel, I. V. Tokatly, and A. Rubio,

“Quantum-electrodynamical density-functional theory: Bridging quantum optics

and electronic-structure theory,” Phys. Rev. A 90, 012508 (2014).

J. Flick, M. Ruggenthaler, H. Appel, and A. Rubio, “Kohn-Sham approach

to quantum electrodynamical density-functional theory: Exact time-dependent

effective potentials in real space,” Proc. Natl. Acad. Sci. U. S. A. 112, 15285–15290

(2015).

J. Flick, N. Rivera, and P. Narang, “Strong light-matter coupling in quantum

chemistry and quantum photonics,” Nanophotonics 7, 1479–1501 (2018).

J. Feist, J. Galego, and F. J. Garcia-Vidal, “Polaritonic chemistry with organic

molecules,” ACS Photonics 5, 205–216 (2017).

R. F. Ribeiro, L. A. Martínez-Martínez, M. Du, J. Campos-Gonzalez-Angulo, and

J. Yuen-Zhou, “Polariton chemistry: Controlling molecular dynamics with optical

cavities,” Chem. Sci. 9, 6325–6339 (2018).

A. F. Kockum, A. Miranowicz, S. De Liberato, S. Savasta, and F. Nori, “Ultrastrong coupling between light and matter,” Nat. Rev. Phys. 1, 19–40 (2019).

10

I. V. Tokatly, “Time-dependent density functional theory for many-electron

systems interacting with cavity photons,” Phys. Rev. Lett. 110, 233001 (2013).

11

J. Flick, “Exact nonadiabatic many-body dynamics: Electron-phonon coupling

in photoelectron spectroscopy and light-matter interactions in quantum electrodynamical density-functional theory,” Ph.D. thesis, Humboldt-Universität zu

Berlin, Berlin, 2016.

12

M. Ruggenthaler, N. Tancogne-Dejean, J. Flick, H. Appel, and A. Rubio, “From

a quantum-electrodynamical light–matter description to novel spectroscopies,”

Nat. Rev. Chem. 2, 0118 (2018).

13

J. Flick, C. Schäfer, M. Ruggenthaler, H. Appel, and A. Rubio, “Ab initio

optimized effective potentials for real molecules in optical cavities: Photon

contributions to the molecular ground state,” ACS Photonics 5, 992–1005

(2018).

14

C. Schäfer, M. Ruggenthaler, H. Appel, and A. Rubio, “Modification of excitation and charge transfer in cavity quantum-electrodynamical chemistry,” Proc.

Natl. Acad. Sci. U. S. A. 116, 4883–4892 (2019).

15

A. Castro, “A first-principles time-dependent density functional theory scheme

for the computation of the electromagnetic response of nanostructures,” Ph.D.

thesis, University of Valladolid, 2004.

16

X. Andrade, “Linear and non-linear response phenomena of molecular systems

within time-dependent density functional theory,” Ph.D. thesis, Universidad del

País Vasco, 2010.

17

M. A. Marques, A. Castro, G. F. Bertsch, and A. Rubio, “Octopus: A firstprinciples tool for excited electron–ion dynamics,” Comput. Phys. Commun. 151,

60–78 (2003).

18

A. Castro, H. Appel, M. Oliveira, C. A. Rozzi, X. Andrade, F. Lorenzen, M. A.

L. Marques, E. K. U. Gross, and A. Rubio, “Octopus: A tool for the application of

time-dependent density functional theory,” Phys. Status Solidi B 243, 2465–2488

(2006).

19

X. Andrade, D. Strubbe, U. De Giovannini, A. H. Larsen, M. J. T. Oliveira,

J. Alberdi-Rodriguez, A. Varas, I. Theophilou, N. Helbig, M. J. Verstraete, L. Stella,

F. Nogueira, A. Aspuru-Guzik, A. Castro, M. A. L. Marques, and A. Rubio, “Realspace grids and the Octopus code as tools for the development of new simulation

approaches for electronic systems,” Phys. Chem. Chem. Phys. 17, 31371–31396

(2015).

20

See https://octopus-code.org/ for the Octopus code, tutorials, and examples can

be found on its website.

21

R. Jestädt, M. Ruggenthaler, M. J. T. Oliveira, A. Rubio, and H. Appel, “Lightmatter interactions within the Ehrenfest-Maxwell-Pauli-Kohn-Sham framework:

J. Chem. Phys. 152, 124119 (2020); doi: 10.1063/1.5142502

© Author(s) 2020

ARTICLE

scitation.org/journal/jcp

Fundamentals, implementation, and nano-optical applications,” Adv. Phys. 68,

225–333 (2019); arXiv:1812.05049.

22

G. F. Bertsch, J.-I. Iwata, A. Rubio, and K. Yabana, “Real-space, real-time

method for the dielectric function,” Phys. Rev. B 62, 7998–8002 (2000).

23

A. Taflove and S. Hagness, Computational Electrodynamics: The FiniteDifference Time-Domain Method, Artech House Antennas and Propagation

Library (Artech House, 2005).

24

I. Bialynicki-Birula, “On the wave function of the photon,” Acta Phys. Pol., Ser.

A 86, 97–116 (1994).

25

S. Ludwig, “Elektromagnetische grundgleichungen in bivektorieller behandlung,” Ann. Phys. 327, 579–586 (1907).

26

R. Loudon, The Quantum Theory of Light (Oxford Science Publications, 1988).

27

D. P. Craig and T. Thirunamachandran, Molecular Quantum Electrodynamics:

An Introduction to Radiation-Molecule Interactions (Courier Corporation, 1998).

28

J. J. Baumberg, J. Aizpurua, M. H. Mikkelsen, and D. R. Smith, “Extreme

nanophotonics from ultrathin metallic gaps,” Nat. Mater. 18, 668–678 (2019).

29

R. van Leeuwen, “The Sham-Schlüter equation in time-dependent densityfunctional theory,” Phys. Rev. Lett. 76, 3610–3613 (1996).

30

C. Pellegrini, J. Flick, I. V. Tokatly, H. Appel, and A. Rubio, “Optimized effective potential for quantum electrodynamical time-dependent density functional

theory,” Phys. Rev. Lett. 115, 093001 (2015).

31

S. Kümmel and L. Kronik, “Orbital-dependent density functionals: Theory and

applications,” Rev. Mod. Phys. 80, 3–60 (2008).

32

M. Mundt and S. Kümmel, “Optimized effective potential in real time: Problems and prospects in time-dependent density-functional theory,” Phys. Rev. A

74, 022511 (2006).

33

H. O. Wijewardane and C. A. Ullrich, “Real-time electron dynamics with exactexchange time-dependent density-functional theory,” Phys. Rev. Lett. 100, 056404

(2008).

34

S.-L. Liao, T.-S. Ho, H. Rabitz, and S.-I. Chu, “Time-local equation for the exact

optimized effective potential in time-dependent density functional theory,” Phys.

Rev. Lett. 118, 243001 (2017).

35

J. Flick, M. Ruggenthaler, H. Appel, and A. Rubio, “Atoms and molecules

in cavities, from weak to strong coupling in quantum-electrodynamics (QED)

chemistry,” Proc. Natl. Acad. Sci. U. S. A. 114, 3026–3034 (2017).

36

S. E. B. Nielsen, C. Schäfer, M. Ruggenthaler, and A. Rubio, “Dressed-orbital

approach to cavity quantum electrodynamics and beyond,” arXiv:1812.00388

(2018).

37

S. Kümmel and J. P. Perdew, “Simple iterative construction of the optimized

effective potential for orbital functionals, including exact exchange,” Phys. Rev.

Lett. 90, 043004 (2003).

38

T. W. Hollins, S. J. Clark, K. Refson, and N. I. Gidopoulos, “Optimized effective potential using the hylleraas variational method,” Phys. Rev. B 85, 235126

(2012).

39

J. Krieger, Y. Li, and G. Iafrate, “Derivation and application of an accurate

Kohn-Sham potential with integer discontinuity,” Phys. Lett. A 146, 256–260

(1990).

40

J. B. Krieger, Y. Li, and G. J. Iafrate, “Construction and application of an accurate

local spin-polarized Kohn-Sham potential with integer discontinuity: Exchangeonly theory,” Phys. Rev. A 45, 101–126 (1992).

41

J. B. Krieger, Y. Li, and G. J. Iafrate, “Systematic approximations to the optimized effective potential: Application to orbital-density-functional theory,” Phys.

Rev. A 46, 5453–5458 (1992).

42

C. Schäfer, M. Ruggenthaler, and A. Rubio, “Ab initio nonrelativistic quantum

electrodynamics: Bridging quantum chemistry and quantum optics from weak to

strong coupling,” Phys. Rev. A 98, 043801 (2018).

43

V. Rokaj, D. M. Welakuh, M. Ruggenthaler, and A. Rubio, “Light–matter interaction in the long-wavelength limit: No ground-state without dipole self-energy,”

J. Phys. B: At., Mol. Opt. Phys. 51, 034005 (2018).

44

J. Flick and P. Narang, “Cavity-correlated electron-nuclear dynamics from first

principles,” Phys. Rev. Lett. 121, 113002 (2018).

45

J. Flick, D. M. Welakuh, M. Ruggenthaler, H. Appel, and A. Rubio, “Light–

matter response in nonrelativistic quantum electrodynamics,” ACS Photonics 6,

2757–2778 (2019).

152, 124119-28

The Journal

of Chemical Physics

46

N. M. Hoffmann, C. Schäfer, A. Rubio, A. Kelly, and H. Appel, “Capturing vacuum fluctuations and photon correlations in cavity quantum electrodynamics with multitrajectory ehrenfest dynamics,” Phys. Rev. A 99, 063819

(2019).

47

J. Galego, C. Climent, F. J. Garcia-Vidal, and J. Feist, “Cavity Casimir-Polder

forces and their effects in ground state chemical reactivity,” Phys. Rev. X 9, 021057

(2019).

48

Note that Hartree-Fock theory is also included within RDMFT by fixing the

orbital occupations to 0 and 1.

49

F. Buchholz, I. Theophilou, S. E. B. Nielsen, M. Ruggenthaler, and A. Rubio,

“Reduced density-matrix approach to strong matter-photon interaction,” ACS

Photonics 6, 2694–2711 (2019).

50

At the current state of the code, we have only implemented the so-called

Müller functional,171 but one could potentially use any RDMFT functional to

approximate two-body expression.

51

A. J. Coleman, “Structure of fermion density matrices,” Rev. Mod. Phys. 35,

668–686 (1963).

52

The respective results for the equilibrium distance b = 1.61 bohr are shown in

Ref. 50, Sec. 7.

53

Performed with the many-body routine of Octopus, see Ref. 19, Sec. 13 for

details.

54

V. I. Anisimov, J. Zaanen, and O. K. Andersen, “Band theory and Mott

insulators: Hubbard U instead of Stoner I,” Phys. Rev. B 44, 943 (1991).

55

V. I. Anisimov, I. V. Solovyev, M. A. Korotin, M. T. Czy˙zyk, and G. A. Sawatzky,

“Density-functional theory and NiO photoemission spectra,” Phys. Rev. B 48,

16929 (1993).

56

A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen, “Density-functional theory

and strong interactions: Orbital ordering in Mott-Hubbard insulators,” Phys. Rev.

B 52, R5467 (1995).

57

V. I. Anisimov, F. Aryasetiawan, and A. Lichtenstein, “First-principles calculations of the electronic structure and spectra of strongly correlated systems: The

LDA+U method,” J. Phys.: Condens. Matter 9, 767 (1997).

58

K. Haule, “Exact double counting in combining the dynamical mean field

theory and the density functional theory,” Phys. Rev. Lett. 115, 196403

(2015).

59

A. G. Petukhov, I. I. Mazin, L. Chioncel, and A. I. Lichtenstein, “Correlated

metals and the LDA+U method,” Phys. Rev. B 67, 153106 (2003).

60

S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, “Electron-energy-loss spectra and the structural stability of nickel oxide: An

LSDA+U study,” Phys. Rev. B 57, 1505–1509 (1998).

61

M. T. Czy˙zyk and G. A. Sawatzky, “Local-density functional and on-site correlations: The electronic structure of La2 CuO4 and LaCuO3 ,” Phys. Rev. B 49,

14211–14228 (1994).

62

N. Tancogne-Dejean, M. J. T. Oliveira, and A. Rubio, “Self-consistent DFT+U

method for real-space time-dependent density functional theory calculations,”

Phys. Rev. B 96, 245133 (2017).

63

L. Xian, D. M. Kennes, N. Tancogne-Dejean, M. Altarelli, and A. Rubio, “Multiflat bands and strong correlations in twisted bilayer boron nitride: Dopinginduced correlated insulator and superconductor,” Nano Lett. 19, 4934–4940

(2019).

64

N. Tancogne-Dejean and A. Rubio, “Parameter-free hybrid functional based on

an extended Hubbard model: DFT+U+V,” arXiv:1911.10813 (2019).

65

L. A. Agapito, S. Curtarolo, and M. Buongiorno Nardelli, “Reformulation of

DFT+U as a pseudohybrid hubbard density functional for accelerated materials

discovery,” Phys. Rev. X 5, 011006 (2015).

66

G. E. Topp, N. Tancogne-Dejean, A. F. Kemper, A. Rubio, and M. A. Sentef,

“All-optical nonequilibrium pathway to stabilising magnetic Weyl semimetals in

pyrochlore iridates,” Nature Commun. 9, 4452 (2018).

67

N. Tancogne-Dejean, M. A. Sentef, and A. Rubio, “Ultrafast modification of

hubbard U in a strongly correlated material: Ab initio high-harmonic generation

in NiO,” Phys. Rev. Lett. 121, 097402 (2018).

68

K. Berland, V. R. Cooper, K. Lee, E. Schröder, T. Thonhauser, P. Hyldgaard, and

B. I. Lundqvist, “van der Waals forces in density functional theory: A review of the

vdW-DF method,” Rep. Prog. Phys. 78, 066501 (2015).

J. Chem. Phys. 152, 124119 (2020); doi: 10.1063/1.5142502

© Author(s) 2020

ARTICLE

scitation.org/journal/jcp

69

S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, “A consistent and accurate

ab initio parametrization of density functional dispersion correction (DFT-D) for

the 94 elements H-Pu,” J. Chem. Phys. 132, 154104 (2010).

70

A. Tkatchenko and M. Scheffler, “Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data,” Phys. Rev.

Lett. 102, 073005 (2009).

71

A. H. Larsen, M. Kuisma, J. Löfgren, Y. Pouillon, P. Erhart, and P. Hyldgaard,

“libvdwxc: A library for exchange–correlation functionals in the vdW-DF family,”

Modell. Simul. Mater. Sci. Eng. 25, 065004 (2017).

72

J. P. Perdew and Y. Wang, “Accurate and simple analytic representation of the

electron-gas correlation energy,” Phys. Rev. B 45, 13244–13249 (1992).

73

G. Román-Pérez and J. M. Soler, “Efficient implementation of a van der Waals

density functional: Application to double-wall carbon nanotubes,” Phys. Rev. Lett.

103, 096102 (2009).

74

M. Frigo and S. G. Johnson, “The design and implementation of FFTW3,” Proc.

IEEE 93, 216–231 (2005), part of special issue: Program generation, optimization,

and platform adaptation.

75

M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, “van

der Waals density functional for general geometries,” Phys. Rev. Lett. 92, 246401

(2004).

76

M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, “Erratum: “van der Waals density functional for general geometries” [Phys. Rev. Lett.

92, 246401 (2004)],” Phys. Rev. Lett. 95, 109902 (2005).

77

K. Lee, E. D. Murray, L. Kong, B. I. Lundqvist, and D. C. Langreth, “Higheraccuracy van der Waals density functional,” Phys. Rev. B 82, 081101 (2010).

78

K. Berland and P. Hyldgaard, “Exchange functional that tests the robustness of

the plasmon description of the van der Waals density functional,” Phys. Rev. B 89,

035412 (2014).

79

J. Klimeš, D. R. Bowler, and A. Michaelides, “Chemical accuracy for the van der

Waals density functional,” J. Phys.: Condens. Matter 22, 022201 (2010).

80

V. R. Cooper, “van der Waals density functional: An appropriate exchange

functional,” Phys. Rev. B 81, 161104 (2010).

81

J. Tomasi, B. Mennucci, and R. Cammi, “Quantum mechanical continuum

solvation models,” Chem. Rev. 105, 2999–3094 (2005).

82

J. Tomasi and M. Persico, “Molecular interactions in solution: An overview of

methods based on continuous distributions of the solvent,” Chem. Rev. 94, 2027–

2094 (1994).

83

J. Tomasi, “The physical model,” in Continuum Solvation Models in Chemical

Physics: From Theory to Applications, edited by B. Mennucci and R. Cammi (Wiley

& Sons, Chichester, UK, 2007), Chap. 1.1, p. 16.

84

A. Delgado, S. Corni, S. Pittalis, and C. A. Rozzi, “Modeling solvation effects

in real-space and real-time within density functional approaches,” J. Chem. Phys.

143, 144111 (2015).

85

E. Cancés, B. Mennucci, and J. Tomasi, “A new integral equation formalism

for the polarizable continuum model: Theoretical background and applications to

isotropic and anisotropic dielectrics,” J. Chem. Phys. 107, 3032 (1997).

86

J.-L. Pascual-ahuir, E. Silla, and I. Tunon, “GEPOL: An improved description

of molecular surfaces. III. A new algorithm for the computation of a solventexcluding surface,” J. Comput. Chem. 15, 1127–1138 (1994).

87

M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H.

Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su et al., “General atomic and

molecular electronic structure system,” J. Comput. Chem. 14, 1347–1363 (1993).

88

J. Perdew, K. Burke, and M. Ernzerhof, “Perdew, Burke, and Ernzerhof reply,”

Phys. Rev. Lett. 80, 891 (1998).

89

M. Caricato, F. Ingrosso, B. Mennucci, and J. Tomasi, “A time-dependent polarizable continuum model: Theory and application,” J. Chem. Phys. 122, 154501

(2005).

90

R. Cammi and J. Tomasi, “Nonequilibrium solvation theory for the polarizable

continuum model: A new formulation at the SCF level with application to the case

of the frequency-dependent linear electric response function,” Int. J. Quantum

Chem. 56, 465–474 (1995).

91

S. Corni, S. Pipolo, and R. Cammi, “Equation of motion for the solvent polarization apparent charges in the polarizable continuum model: Application to

real-time TDDFT,” J. Phys. Chem. A 119, 5405–5416 (2014).

152, 124119-29

The Journal

of Chemical Physics

92

G. Gil, S. Pipolo, A. Delgado, C. A. Rozzi, and S. Corni, “Nonequilibrium solvent

polarization effects in real-time electronic dynamics of solute molecules subject

to time-dependent electric fields: A new feature of the polarizable continuum

model,” J. Chem. Theory Comput. 15, 2306–2319 (2019).

93

L. Onsager, “Electric moments of molecules in liquids,” J. Am. Chem. Soc. 58,

1486–1493 (1936).

94

S. Corni, R. Cammi, B. Mennucci, and J. Tomasi, “Electronic excitation energies

of molecules in solution within continuum solvation models: Investigating the discrepancy between state-specific and linear-response methods,” J. Chem. Phys. 123,

134512 (2005).

95

P. Buczek, A. Ernst, and L. M. Sandratskii, “Different dimensionality trends

in the Landau damping of magnons in iron, cobalt, and nickel: Time-dependent

density functional study,” Phys. Rev. B 84, 174418 (2011).

96

M. Niesert, “Ab initio calculations of spin-wave excitation spectra from timedependent density-functional theory,” Ph.D. dissertation (RWTH University,

Aachen, 2011), record converted from VDB: 12.11.2012.

97

B. Rousseau, A. Eiguren, and A. Bergara, “Efficient computation of magnon

dispersions within time-dependent density functional theory using maximally

localized wannier functions,” Phys. Rev. B 85, 054305 (2012).

98

T. Gorni, I. Timrov, and S. Baroni, “Spin dynamics from time-dependent

density functional perturbation theory,” Eur. Phys. J. B 91, 249 (2018).

99

K. Cao, H. Lambert, P. G. Radaelli, and F. Giustino, “Ab initio calculation of spin fluctuation spectra using time-dependent density functional perturbation theory, plane waves, and pseudopotentials,” Phys. Rev. B 97, 024420

(2018).

100

N. Singh, P. Elliott, T. Nautiyal, J. K. Dewhurst, and S. Sharma, “Adiabatic

generalized gradient approximation kernel in time-dependent density functional

theory,” Phys. Rev. B 99, 035151 (2019).

101

S. Y. Savrasov, “Linear response calculations of spin fluctuations,” Phys. Rev.

Lett. 81, 2570–2573 (1998).

102

N. Tancogne-Dejean, F. G. Eich, and A. Rubio, “Time-dependent magnons

from first principles,” J. Chem. Theory Comput. 16, 1007–1017 (2020).

103

L. M. Sandratskii, “Energy band structure calculations for crystals with spiral

magnetic structure,” Phys. Status Solidi B 136, 167–180 (1986).

104

H. A. Mook and D. M. Paul, “Neutron-scattering measurement of the spinwave spectra for nickel,” Phys. Rev. Lett. 54, 227–229 (1985).

105

U. De Giovannini, G. Brunetto, A. Castro, J. Walkenhorst, and A. Rubio, “Simulating pump–probe photoelectron and absorption spectroscopy on the attosecond timescale with time-dependent density functional theory,” ChemPhysChem

14, 1363–1376 (2013).

106

J. Walkenhorst, U. De Giovannini, A. Castro, and A. Rubio, “Tailored pumpprobe transient spectroscopy with time-dependent density-functional theory:

Controlling absorption spectra,” Eur. Phys. J. B 89, 128 (2016).

107

U. De Giovannini, “Pump-probe photoelectron spectra,” in Handbook of

Materials Modeling Methods: Theory Modeling (Springer, 2018), pp. 1–19.

108

S. Sato, H. Hübener, U. De Giovannini, and A. Rubio, “Ab initio simulation

of attosecond transient absorption spectroscopy in two-dimensional materials,”

Appl. Sci. 8, 1777 (2018).

109

L. D. Barron, Molecular Light Scattering and Optical Activity, 2nd ed.

(Cambridge University Press, Cambridge, 2004).

110

F. R. Keßler and J. Metzdorf, “Landau level spectroscopy: Interband effects and

Faraday rotation,” in Modern Problems in Condensed Matter Sciences, edited by

V. M. Agranovich and A. A. Maradudin (Elsevier Science Publishers, Amsterdam,

1991), Vol. 27.1, Chap. 11.

111

H. Solheim, K. Ruud, S. Coriani, and P. Norman, “Complex polarization propagator calculations of magnetic circular dichroism spectra,” J. Chem. Phys. 128,

094103 (2008).

112

H. Solheim, K. Ruud, S. Coriani, and P. Norman, “The A and B terms

of magnetic circular dichroism revisited,” J. Phys. Chem. A 112, 9615–9618

(2008).

113

K.-M. Lee, K. Yabana, and G. F. Bertsch, “Magnetic circular dichroism in

real-time time-dependent density functional theory,” J. Chem. Phys. 134, 144106

(2011).

J. Chem. Phys. 152, 124119 (2020); doi: 10.1063/1.5142502

© Author(s) 2020

ARTICLE

scitation.org/journal/jcp

114

M. Seth, M. Krykunov, T. Ziegler, J. Autschbach, and A. Banerjee, “Application

of magnetically perturbed time-dependent density functional theory to magnetic

circular dichroism: Calculation of B terms,” J. Chem. Phys. 128, 144105 (2008).

115

M. Seth, M. Krykunov, T. Ziegler, and J. Autschbach, “Application of magnetically perturbed time-dependent density functional theory to magnetic circular

dichroism. II. Calculation of A terms,” J. Chem. Phys. 128, 234102 (2008).

116

I. V. Lebedeva, D. A. Strubbe, I. V. Tokatly, and A. Rubio, “Orbital magnetooptical response of periodic insulators from first principles,” npj Comput. Mater.

5, 32 (2019).

117

R. D. King-Smith and D. Vanderbilt, “Theory of polarization of crystalline

solids,” Phys. Rev. B 47, 1651–1654 (1993).

118

D. Vanderbilt and R. D. King-Smith, “Electric polarization as a bulk quantity

and its relation to surface charge,” Phys. Rev. B 48, 4442–4455 (1993).

119

R. Resta, “Macroscopic polarization in crystalline dielectrics: The geometric

phase approach,” Rev. Mod. Phys. 66, 899–915 (1994).

120

A. M. Essin, A. M. Turner, J. E. Moore, and D. Vanderbilt, “Orbital magnetoelectric coupling in band insulators,” Phys. Rev. B 81, 205104 (2010).

121

K.-T. Chen and P. A. Lee, “Unified formalism for calculating polarization,

magnetization, and more in a periodic insulator,” Phys. Rev. B 84, 205137

(2011).

122

X. Gonze and J. W. Zwanziger, “Density-operator theory of orbital magnetic

susceptibility in periodic insulators,” Phys. Rev. B 84, 064445 (2011).

123

X. Andrade, S. Botti, M. A. L. Marques, and A. Rubio, “Time-dependent

density functional theory scheme for efficient calculations of dynamic

(hyper)polarizabilities,” J. Chem. Phys. 126, 184106 (2007).

124

D. A. Strubbe, “Optical and transport properties of organic molecules: Methods

and applications,” Ph.D. thesis, University of California, Berkeley, USA, 2012.

125

D. A. Strubbe, L. Lehtovaara, A. Rubio, M. A. L. Marques, and S. G. Louie,

“Response functions in TDDFT: Concepts and implementation,” in Fundamentals

of Time-Dependent Density Functional Theory (Springer Berlin Heidelberg, Berlin,

Heidelberg, 2012), pp. 139–166.

126

M. Lazzeri and F. Mauri, “High-order density-matrix perturbation theory,”

Phys. Rev. B 68, 161101 (2003).

127

X. Gonze and J.-P. Vigneron, “Density-functional approach to nonlinearresponse coefficients of solids,” Phys. Rev. B 39, 13120–13128 (1989).

128

A. D. Corso, F. Mauri, and A. Rubio, “Density-functional theory of the nonlinear optical susceptibility: Application to cubic semiconductors,” Phys. Rev. B 53,

15638–15642 (1996).

129

J. A. Berger, “Fully parameter-free calculation of optical spectra for insulators,

semiconductors, and metals from a simple polarization functional,” Phys. Rev.

Lett. 115, 137402 (2015).

130

S. Albrecht, L. Reining, R. Del Sole, and G. Onida, “Ab initio calculation of

excitonic effects in the optical spectra of semiconductors,” Phys. Rev. Lett. 80,

4510–4513 (1998).

131

S. Botti, F. Sottile, N. Vast, V. Olevano, L. Reining, H.-C. Weissker, A. Rubio,

G. Onida, R. Del Sole, and R. W. Godby, “Long-range contribution to the

exchange-correlation kernel of time-dependent density functional theory,” Phys.

Rev. B 69, 155112 (2004).

132

P. Lautenschlager, M. Garriga, L. Viña, and M. Cardona, “Temperature

dependence of the dielectric function and interband critical points in silicon,”

Phys. Rev. B 36, 4821–4830 (1987).

133

U. De Giovannini and A. Castro, “Real-time and real-space time-dependent

density-functional theory approach to attosecond dynamics,” in Attosecond

Molecular Dynamics (Royal Society of Chemistry, Cambridge, 2018), pp. 424–461.

134

U. De Giovannini, H. Hübener, and A. Rubio, “A first-principles timedependent density functional theory framework for spin and time-resolved

angular-resolved photoelectron spectroscopy in periodic systems,” J. Chem.

Theory Comput. 13, 265–273 (2017).

135

L. Tao and A. Scrinzi, “Photo-electron momentum spectra from minimal

volumes: The time-dependent surface flux method,” New J. Phys. 14, 013021

(2012).

136

P. Wopperer, U. De Giovannini, and A. Rubio, “Efficient and accurate modeling of electron photoemission in nanostructures with TDDFT,” Eur. Phys. J. B 90,

1307 (2017).

152, 124119-30

The Journal

of Chemical Physics

137

U. De Giovannini, A. H. Larsen, A. Rubio, and A. Rubio, “Modeling electron dynamics coupled to continuum states in finite volumes with absorbing

boundaries,” Eur. Phys. J. B 88, 56 (2015).

138

S. A. Sato, H. Hübener, A. Rubio, and U. De Giovannini, “First-principles

simulations for attosecond photoelectron spectroscopy based on time-dependent

density functional theory,” Eur. Phys. J. B 91, 126 (2018).

139

X. Andrade, A. Castro, D. Zueco, J. L. Alonso, P. Echenique, F. Falceto,

and A. Rubio, “Modified Ehrenfest formalism for efficient large-scale ab initio

molecular dynamics,” J. Chem. Theory Comput. 5, 728–742 (2009).

140

H. Hübener, U. De Giovannini, and A. Rubio, “Phonon driven Floquet matter,”

Nano Lett. 18, 1535–1542 (2018).

141

U. De Giovannini, H. Hübener, and A. Rubio, “Monitoring electron-photon

dressing in WSe2,” Nano Lett. 16, 7993–7998 (2016).

142

T. Oka and S. Kitamura, “Floquet engineering of quantum materials,” Annu.

Rev. Condens. Matter Phys. 10, 387–408 (2019).

143

U. De Giovannini and H. Hübener, “Floquet analysis of excitations in materials,” J. Phys.: Mater. 3, 012001 (2019).

144

C. I. Blaga, J. Xu, A. D. DiChiara, E. Sistrunk, K. Zhang, P. Agostini, T. A.

Miller, L. F. DiMauro, and C. D. Lin, “Imaging ultrafast molecular dynamics with

laser-induced electron diffraction,” Nature 483, 194–197 (2012).

145

F. Kreˇcini´c, P. Wopperer, B. Frusteri, F. Brauße, J.-G. Brisset, U. De Giovannini, A. Rubio, A. Rouzée, and M. J. J. Vrakking, “Multiple-orbital effects in

laser-induced electron diffraction of aligned molecules,” Phys. Rev. A 98, 041401

(2018).

146

A. Trabattoni, S. Trippel, U. De Giovannini, J. F. Olivieri, J. Wiese, T. Mullins,

J. Onvlee, S.-K. Son, B. Frusteri, A. Rubio, and J. Küpper, “Setting the clock

of photoelectron emission through molecular alignment,” arXiv:1802.06622

(2018).

147

V. Recoules, F. Lambert, A. Decoster, B. Canaud, and J. Clérouin, “Ab initio

determination of thermal conductivity of dense hydrogen plasmas,” Phys. Rev.

Lett. 102, 075002 (2009).

148

F. Lambert, V. Recoules, A. Decoster, J. Clerouin, and M. Desjarlais, “On the

transport coefficients of hydrogen in the inertial confinement fusion regime,”

Phys. Plasmas 18, 056306 (2011).

149

X. Andrade, S. Hamel, and A. A. Correa, “Negative differential conductivity

in liquid aluminum from real-time quantum simulations,” Eur. Phys. J. B 91, 229

(2018).

150

F. Eich, M. Di Ventra, and G. Vignale, “Functional theories of thermoelectric

phenomena,” J. Phys.: Condens. Matter 29, 063001 (2016).

151

G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio totalenergy calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169–11186

(1996).

152

P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev. 136,

B864–B871 (1964).

153

E. Runge and E. K. U. Gross, “Density-functional theory for time-dependent

systems,” Phys. Rev. Lett. 52, 997–1000 (1984).

154

J. Neugebauer, “Chromophore-specific theoretical spectroscopy: From subsystem density functional theory to mode-specific vibrational spectroscopy,” Phys.

Rep. 489, 1–87 (2010).

155

R. F. W. Bader, Atoms in Molecules: A Quantum Theory (Clarendon Press,

1994).

156

A. Krishtal, D. Ceresoli, and M. Pavanello, “Subsystem real-time time dependent density functional theory,” J. Chem. Phys. 142, 154116 (2015).

157

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).

158

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)],” Phys. Rev. Lett. 78, 1396

(1997).

159

M. Schlipf and F. Gygi, “Optimization algorithm for the generation of ONCV

pseudopotentials,” Comput. Phys. Commun. 196, 36–44 (2015).

160

E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, and T. E. Ferrin, “UCSF Chimera—A visualization system for exploratory research and analysis,” J. Comput. Chem. 25, 1605–1612

(2004).

J. Chem. Phys. 152, 124119 (2020); doi: 10.1063/1.5142502

© Author(s) 2020

ARTICLE

scitation.org/journal/jcp

161

J. Jornet-Somoza, J. Alberdi-Rodriguez, B. F. Milne, X. Andrade, M. A. L.

Marques, F. Nogueira, M. J. T. Oliveira, J. J. P. Stewart, and A. Rubio, “Insights

into colour-tuning of chlorophyll optical response in green plants,” Phys. Chem.

Chem. Phys. 17, 26599–26606 (2015).

162

J. Jornet-Somoza and I. Lebedeva, “Real-time propagation TDDFT and density analysis for exciton coupling calculations in large systems,” J. Chem. Theory

Comput. 15, 3743–3754 (2019).

163

A. Gómez Pueyo, M. A. L. Marques, A. Rubio, and A. Castro, “Propagators for

the time-dependent Kohn–Sham equations: Multistep, Runge–Kutta, exponential

Run ...

参考文献をもっと見る