リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「La5Ti2Cu1-xAgxS5O7 photocathodes operating at positive potentials during photoelectrochemical hydrogen evolution under irradiation of up to 710 nm」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

La5Ti2Cu1-xAgxS5O7 photocathodes operating at positive potentials during photoelectrochemical hydrogen evolution under irradiation of up to 710 nm

Hisatomi, Takashi Okamura, Shintaro Liu, Jingyuan Shinohara, Yuki Ueda, Koichiro Higashi, Tomohiro Katayama, Masao Minegishi, Tsutomu Domen, Kazunari 信州大学 DOI:10.1039/c5ee02431e

2021.02.16

概要

A photoelectrochemical (PEC) cell based on a series-connected photocathode and photoanode made of particulate semiconductors is a potentially scalable and inexpensive device for renewable solar hydrogen production via PEC water splitting without any external power supply. The realisation of such PEC devices hinges on the development of photoelectrodes that operate at a small applied voltage. In this study, solid solutions of La5Ti2CuS5O7 (LTC) and La5Ti2AgS5O7 (LTA) were synthesised, and their physical, optical, and PEC properties in the water splitting reaction were discussed. LTC and LTA formed a La5Ti2Cu1-xAgxS5O7 solid solution (LTC(1-x)A(x)) over the whole compositional range. The indirect bandgap energy of LTC(1-x)A(x) changed nonlinearly with respect to composition, attaining its minimum value (ca. 1.8 eV) at a composition of x approximate to 0.16. Photoelectrodes of Al-doped LTC(1-x)A(x) solid solution powder fabricated using the particle transfer method exhibited a photocathodic response regardless of the Ag content. 1% Al-LTC(0.9)A(0.1) photocathodes exhibited the best PEC properties in the hydrogen evolution reaction and yielded a hypothetical half-cell solar-to-hydrogen energy conversion efficiency of 0.25% at +0.6 V vs. RHE, three times higher than the previously reported 1% Sc-LTC. In addition, 1% Al-LTC(0.9)A(0.1) photocathodes were fairly stable at + 0.7 V vs. RHE without any protective modifications. Owing to the positive operational electrode potential of 1% Al-LTC(0.9)A(0.1), unassisted PEC water splitting was accomplished using series-connected photoelectrodes made of 1% Al-LTC(0.9)A(0.1) and BaTaO2N, particulate semiconductors with absorption edge wavelengths of 710 and 660 nm, respectively, at a Faradaic efficiency of unity and a solar-to-hydrogen energy conversion efficiency of approximately 0.1%.

この論文で使われている画像

参考文献

1 M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher,

Q. Mi, E. A. Santori and N. S. Lewis, Chem. Rev., 2010, 110, 6446.

2 B. A. Pinaud, J. D. Benck, L. C. Seitz, A. J. Forman, Z. Chen,

T. G. Deutsch, B. D. James, K. N. Baum, G. N. Baum, S. Ardo,

H. Wang, E. Miller and T. F. Jaramillo, Energy Environ. Sci.,

2013, 6, 1983.

3 Z. Li, W. Luo, M. Zhang, J. Feng and Z. Zou, Energy Environ.

Sci., 2013, 6, 347.

4 L. C. Seitz, Z. Chen, A. J. Forman, B. A. Pinaud, J. D. Benck

and T. F. Jaramillo, ChemSusChem, 2014, 7, 1372–1385.

5 T. Hisatomi, J. Kubota and K. Domen, Chem. Soc. Rev., 2014,

43, 7520.

6 J. A. Herron, J. Kim, A. A. Upadhye, G. W. Huber and

C. T. Maravelias, Energy Environ. Sci., 2015, 8, 126.

7 R. B. Biniwale, S. Rayalu, S. Devotta and M. Ichikawa, Int.

J. Hydrogen Energy, 2008, 33, 360.

8 P. Wang, T. Minegishi, G. Ma, K. Takanabe, Y. Satou,

S. Maekawa, Y. Kobori, J. Kubota and K. Domen, J. Am.

Chem. Soc., 2012, 134, 2469.

9 V. Kalousek, P. Wang, T. Minegishi, T. Hisatomi, K. Nakagawa,

S. Oshima, Y. Kobori, J. Kubota and K. Domen, ChemSusChem,

2014, 7, 2690.

10 T. Hisatomi, K. Takanabe and K. Domen, Catal. Lett., 2015,

145, 95.

¨lo, C. Guillot-Deudon

11 V. Meignen, L. Cario, A. Lafond, Y. Moe

and A. Meerschaut, J. Solid State Chem., 2004, 177, 2810.

12 T. Suzuki, T. Hisatomi, K. Teramura, Y. Shimodaira,

H. Kobayashi and K. Domen, Phys. Chem. Chem. Phys.,

2012, 14, 15475.

13 M. Katayama, D. Yokoyama, Y. Maeda, Y. Ozaki, M. Tabata,

Y. Matsumoto, A. Ishikawa, J. Kubota and K. Domen, Mater.

Sci. Eng., B, 2010, 173, 275.

14 J. Liu, T. Hisatomi, G. Ma, A. Iwanaga, T. Minegishi,

Y. Moriya, M. Katayama, J. Kubota and K. Domen, Energy

Environ. Sci., 2014, 7, 2239.

15 G. Ma, J. Liu, T. Hisatomi, T. Minegishi, Y. Moriya,

M. Iwase, H. Nishiyama, M. Katayama, T. Yamada and

K. Domen, Chem. Commun., 2015, 51, 4302.

This journal is © The Royal Society of Chemistry 2015

Energy & Environmental Science

16 G. Ma, Y. Suzuki, R. B. Singh, A. Iwanaga, Y. Moriya,

T. Minegishi, J. Liu, T. Hisatomi, H. Nishiyama, M. Katayama,

K. Seki, A. Furube, T. Yamada and K. Domen, Chem. Sci., 2015,

6, 4513.

¨tzel and

17 A. Paracchino, V. Laporte, K. Sivula, M. Gra

E. Thimsen, Nat. Mater., 2011, 10, 456.

18 C. Li, T. Hisatomi, O. Watanabe, M. Nakabayashi, N. Shibata,

K. Domen and J.-J. Delaunay, Energy Environ. Sci., 2015, 8, 1493.

´vot, N. Guijarro and K. Sivula, ChemSusChem, 2015,

19 M. S. Pre

8, 1359.

20 U. A. Joshi and P. A. Maggard, J. Phys. Chem. Lett., 2012,

3, 1577.

21 O. Palasyuk, A. Palasyuk and P. A. Maggard, J. Solid State

Chem., 2010, 183, 814.

22 J. Gu, Y. Yan, J. W. Krizan, Q. D. Gibson, Z. M. Detweiler,

R. J. Cava and A. B. Bocarsly, J. Am. Chem. Soc., 2014, 136, 830.

23 W. Septina, Gunawan, S. Ikeda, T. Harada, M. Higashi,

R. Abe and M. Matsumura, J. Phys. Chem. C, 2015, 119, 8576.

24 J. Zhao, T. Minegishi, L. Zhang, M. Zhong, Gunawan,

M. Nakabayashi, G. Ma, T. Hisatomi, M. Katayama, S. Ikeda,

N. Shibata, T. Yamada and K. Domen, Angew. Chem., Int. Ed.,

2014, 53, 11808.

25 L. Rovelli, S. D. Tilley and K. Sivula, ACS Appl. Mater.

Interfaces, 2013, 5, 8018.

26 H. Kumagai, T. Minegishi, N. Sato, T. Yamada, J. Kubota

and K. Domen, J. Mater. Chem. A, 2015, 3, 8300.

27 K. Ueda, T. Minegishi, J. Clune, M. Nakabayashi, T. Hisatomi,

H. Nishiyama, M. Katayama, N. Shibata, J. Kubota, T. Yamada

and K. Domen, J. Am. Chem. Soc., 2015, 137, 2227.

28 K. Momma and F. Izumi, J. Appl. Crystallogr., 2011, 44, 1272.

29 T. Minegishi, N. Nishimura, J. Kubota and K. Domen, Chem.

Sci., 2013, 4, 1120.

30 K. Maeda, K. Teramura, T. Takata, M. Hara, N. Saito,

K. Toda, Y. Inoue, H. Kobayashi and K. Domen, J. Phys.

Chem. B, 2005, 109, 20504.

31 M. Yoshida, T. Hirai, K. Maeda, N. Saito, J. Kubota, H. Kobayashi,

Y. Inoue and K. Domen, J. Phys. Chem. C, 2010, 114, 15510.

32 H. Chen, L. Wang, J. Bai, J. C. Hanson, J. B. Warren,

J. T. Muckerman, E. Fujita and J. A. Rodriguez, J. Phys.

Chem. C, 2010, 114, 1809.

33 B.-T. Liou, S.-H. Yen and Y.-K. Kuo, Appl. Phys. A: Mater. Sci.

Process., 2005, 81, 651.

34 L. Zhang, T. Minegishi, J. Kubota and K. Domen, Phys.

Chem. Chem. Phys., 2014, 16, 6167.

¨tzel, J. Phys. Chem. C,

35 F. Le Formal, K. Sivula and M. Gra

2012, 116, 26707.

36 M. Zhong, T. Hisatomi, Y. Kuang, J. Zhao, M. Liu, A. Iwase,

Q. Jia, H. Nishiyama, T. Minegishi, M. Nakabayashi, N. Shibata,

R. Niishiro, C. Katayama, H. Shibano, M. Katayama, A. Kudo,

T. Yamada and K. Domen, J. Am. Chem. Soc., 2015, 137, 5053.

´lez-Calbet,

37 Y. Li, L. Zhang, A. Torres-Pardo, J. M. Gonza

Y. Ma, P. Oleynikov, O. Terasaki, S. Asahina, M. Shima,

D. Cha, L. Zhao, K. Takanabe, J. Kubota and K. Domen, Nat.

Commun., 2013, 4, 2566.

38 S. W. Boettcher, E. L. Warren, M. C. Putnam, E. A. Santori,

D. Turner-Evans, M. D. Kelzenberg, M. G. Walter, J. R. McKone,

Energy Environ. Sci., 2015, 8, 3354--3362 | 3361

View Article Online

Energy & Environmental Science

Open Access Article. Published on 22 September 2015. Downloaded on 2/16/2021 2:23:49 AM.

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

39

40

41

42

B. S. Brunschwig, H. A. Atwater and N. S. Lewis, J. Am. Chem.

Soc., 2011, 133, 1216.

F. F. Abdi, L. Han, A. H. M. Smets, M. Zeman, B. Dam and

R. van de Krol, Nat. Commun., 2013, 4, 2195.

J. Brillet, J.-H. Yum, M. Cornuz, T. Hisatomi, R. Solarska,

J. Augustynski, M. Graetzel and K. Sivula, Nat. Photonics,

2012, 6, 824.

O. Khaselev and J. A. Turner, Science, 1998, 280, 425.

J. Luo, J.-H. Im, M. T. Mayer, M. Schreier, M. K. Nazeeruddin,

¨tzel, Science,

N.-G. Park, S. D. Tilley, H. J. Fan and M. Gra

2014, 345, 1593.

3362 | Energy Environ. Sci., 2015, 8, 3354--3362

Paper

43 M. G. Kibria, F. A. Chowdhury, S. Zhao, B. AlOtaibi,

M. L. Trudeau, H. Guo and Z. Mi, Nat. Commun., 2015,

6, 6797.

44 Q. Wang, Y. Li, T. Hisatomi, M. Nakabayashi, N. Shibata,

J. Kubota and K. Domen, J. Catal., 2015, 328, 308.

45 K. Maeda, M. Higashi, D. Lu, R. Abe and K. Domen, J. Am.

Chem. Soc., 2010, 132, 5858.

46 H. Kato, Y. Sasaki, N. Shirakura and A. Kudo, J. Mater. Chem.

A, 2013, 1, 12327.

47 Q. Wang, T. Hisatomi, S. S. K. Ma, Y. Li and K. Domen

Wang, Chem. Mater., 2014, 26, 4144.

This journal is © The Royal Society of Chemistry 2015

...

参考文献をもっと見る