リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Generation of third-harmonic spin oscillation from strong spin precession induced by terahertz magnetic near fields」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Generation of third-harmonic spin oscillation from strong spin precession induced by terahertz magnetic near fields

Zhang, Zhenya Sekiguchi, Fumiya Moriyama, Takahiro Furuya, Shunsuke C. Sato, Masahiro Satoh, Takuya Mukai, Yu Tanaka, Koichiro Yamamoto, Takafumi Kageyama, Hiroshi Kanemitsu, Yoshihiko Hirori, Hideki 京都大学 DOI:10.1038/s41467-023-37473-1

2023

概要

The ability to drive a spin system to state far from the equilibrium is indispensable for investigating spin structures of antiferromagnets and their functional nonlinearities for spintronics. While optical methods have been considered for spin excitation, terahertz (THz) pulses appear to be a more convenient means of direct spin excitation without requiring coupling between spins and orbitals or phonons. However, room-temperature responses are usually limited to small deviations from the equilibrium state because of the relatively weak THz magnetic fields in common approaches. Here, we studied the magnetization dynamics in a HoFeO₃ crystal at room temperature. A custom-made spiral-shaped microstructure was used to locally generate a strong multicycle THz magnetic near field perpendicular to the crystal surface; the maximum magnetic field amplitude of about 2 T was achieved. The observed time-resolved change in the Faraday ellipticity clearly showed second- and third-order harmonics of the magnetization oscillation and an asymmetric oscillation behaviour. Not only the ferromagnetic vector M but also the antiferromagnetic vector L plays an important role in the nonlinear dynamics of spin systems far from equilibrium.

この論文で使われている画像

参考文献

1.

von Hoegen, A., Mankowsky, R., Fechner, M., Först, M. & Cavalleri,

A. Probing the interatomic potential of solids with strong-field

nonlinear phononics. Nature 555, 79–82 (2018).

2. Borsch, M. et al. Super-resolution lightwave tomography of electronic bands in quantum materials. Science 370, 1204–1207 (2020).

3. Saitoh, E., Ueda, M., Miyajima, H. & Tatara, G. Conversion of spin

current into charge current at room temperature: inverse spin-Hall

effect. Appl. Phys. Lett. 88, 182509 (2006).

4. Chumak, A. V., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B.

Magnon spintronics. Nat. Phys. 11, 453–461 (2015).

5. Wadley, P. et al. Electrical switching of an antiferromagnet. Science

351, 587–590 (2016).

6. Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotech. 11, 231–241 (2016).

7. Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90,

015005 (2018).

8. Němec, P., Fiebig, M., Kampfrath, T. & Kimel, A. V. Antiferromagnetic opto-spintronics. Nat. Phys. 14, 229–241 (2018).

9. Olejník, K. et al. Terahertz electrical writing speed in an antiferromagnetic memory. Sci. Adv. 4, eaar3566 (2018).

10. Li, J. et al. Spin current from sub-terahertz-generated antiferromagnetic magnons. Nature 578, 70–74 (2020).

11. Vaidya, P. et al. Subterahertz spin pumping from an insulating

antiferromagnet. Science 368, 160–165 (2020).

Article

12. Huang, L. et al. G. Terahertz pulse-induced Néel vector switching in

α-Fe2O3/Pt heterostructures. Appl. Phys. Lett. 119, 212401 (2021).

13. Jingwen Li, J., Yang, C.-J., Mondal, R., Tzschaschel, C. & Pal, S. A

perspective on nonlinearities in coherent magnetization dynamics.

Appl. Phys. Lett. 120, 050501 (2022).

14. Kimel, A. V., Kirilyuk, A., Tsvetkov, A., Pisarev, R. V. & Rasing, T.

Laser-induced ultrafast spin reorientation in the antiferromagnet

TmFeO3. Nature 429, 850–853 (2004).

15. Satoh, T., Iida, R., Higuchi, T., Fiebig, M. & Shimura, T. Writing and

reading of an arbitrary optical polarization state in an antiferromagnet. Nat. Photon. 9, 25–29 (2015).

16. Hortensius, J. R. et al. Coherent spin-wave transport in an antiferromagnet. Nat. Phys. 17, 1001–1006 (2021).

17. Kampfrath, T. et al. Coherent terahertz control of antiferromagnetic

spin waves. Nat. Photon. 5, 31–34 (2010).

18. Kubacka, T. et al. Large-amplitude spin dynamics driven by a THz

Pulse in resonance with an electromagnon. Science 343,

1333–1336 (2014).

19. Baierl, S. et al. Terahertz-driven nonlinear spin response of antiferromagnetic nickel oxide. Phys. Rev. Lett. 117, 197201 (2016).

20. Baierl, S. et al. Nonlinear spin control by terahertz-driven anisotropy

fields. Nat. Photon. 10, 715–718 (2016).

21. Nova, T. F. et al. An effective magnetic field from optically driven

phonons. Nat. Phys. 13, 132–136 (2017).

22. Li, X. et al. Observation of Dicke cooperativity in magnetic interactions. Science 361, 794–797 (2018).

23. Afanasiev, D. et al. Ultrafast control of magnetic interactions via

light-driven phonons. Nat. Mater. 20, 607–611 (2021).

24. Fitzky, G., Nakajima, M., Koike, Y., Leitenstorfer, A. & Kurihara, T.

Ultrafast control of magnetic anisotropy by resonant excitation of 4f

electrons and phonons in Sm0.7Er0.3FeO3. Phys. Rev. Lett. 127,

107401 (2021).

25. Mashkovich, E. A. et al. Terahertz-light driven coupling of antiferromagnetic spins to lattice. Science 374, 1608–1611 (2021).

26. Lu, J. et al. Coherent two-dimensional terahertz magnetic resonance spectroscopy of collective spin waves. Phys. Rev. Lett. 118,

207204 (2017).

27. Schlauderer, S. et al. Temporal and spectral fingerprints of ultrafast

all-coherent spin switching. Nature 569, 383–387 (2019).

28. Mukai, Y., Hirori, H., Yamamoto, T., Kageyama, H. & Tanaka, K.

Nonlinear magnetization dynamics of antiferromagnetic spin resonance induced by intense terahertz magnetic field. New J. Phys. 18,

013045 (2016).

29. Hirori, H., Doi, A., Blanchard, F. & Tanaka, K. Single-cycle terahertz

pulses with amplitudes exceeding 1 MV/cm generated by optical

rectification in LiNbO3. Appl. Phys. Lett. 98, 091106 (2011).

30. Kimel, A. V. et al. Inertia-driven spin switching in antiferromagnets.

Nat. Phys. 5, 727–731 (2009).

31. Iida, R. et al. Spectral dependence of photoinduced spin precession

in DyFeO3. Phys. Rev. B. 84, 064402 (2011).

32. Cheng, R., Xiao, J., Niu, Q. & Brataas, A. Spin pumping and spintransfer torques in antiferromagnets. Phys. Rev. Lett. 113,

057601 (2014).

33. Seifert, T. S. et al. Femtosecond formation dynamics of the spin

Seebeck effect revealed by terahertz spectroscopy. Nat. Commun.

9, 2899 (2018).

34. Tanaka, O. et al. Thermodynamic evidence for a field-angledependent Majorana gap in a Kitaev spin liquid. Nat. Phys. 18,

429–435 (2022).

Nature Communications | (2023)14:1795

https://doi.org/10.1038/s41467-023-37473-1

35. Shao, M. et al. Single crystal growth, magnetic properties and

Schottky anomaly of HoFeO3 orthoferrite. J. Cryst. Growth 318,

947–950 (2011).

36. Herrmann, G. F. Resonance and high frequency susceptibility in

canted antiferromagnetic substances. J. Phys. Chem. Solids 24,

597–606 (1963).

Acknowledgements

The authors thank Motoaki Bamba for fruitful discussions. Part of this

study was supported by a grant from the Japan Society for the Promotion

of Science, JSPS KAKENHI Grants JP19H05465 (Y.K.), JP19H05824 (H.H.),

and JP21H01842 (H.H.). This work was also supported by JST SPRING

Grant JPMJSP2110 (Z.Z.).

Author contributions

Z.Z. and H.H. carried out the experiments. Z.Z., F.S., T.M., S.C.F., M.S.,

T.S., Y.K., and H.H. analysed the data. S.C.F. and M.S. developed the

theory of the selection rules for the high harmonic generation of spin

dynamics. Z.Z., Y.K., and H.H. designed the metallic microstructure.

Y.M., K.T., T.Y., H.K., and H.H. fabricated the HoFeO3 crystal. Y.K. and

H.H. conceived and supervised the project. All authors discussed the

results and contributed to the writing of the paper.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information The online version contains

supplementary material available at

https://doi.org/10.1038/s41467-023-37473-1.

Correspondence and requests for materials should be addressed to

Yoshihiko Kanemitsu or Hideki Hirori.

Peer review information Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this

work. Peer reviewer reports are available.

Reprints and permissions information is available at

http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license, and indicate if

changes were made. The images or other third party material in this

article are included in the article’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this license, visit http://creativecommons.org/

licenses/by/4.0/.

© The Author(s) 2023

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る