リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Polarization anomaly in high harmonics in the crossover region between perturbative and extreme nonlinearity in GaAs」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Polarization anomaly in high harmonics in the crossover region between perturbative and extreme nonlinearity in GaAs

Sekiguchi, Fumiya Yumoto, Go Hirori, Hideki Kanemitsu, Yoshihiko 京都大学 DOI:10.1103/PhysRevB.106.L241201

2022.12.15

概要

We investigate the characteristics of high harmonics (HHs) unique to the nonperturbative nonlinear regime. We show that the polarization state of HHs generated from GaAs changes drastically across the crossover from the weak-field perturbative regime to the strong-field extreme nonlinear regime, while the linearly polarized infrared excitation field (Eexc) is fixed to a particular crystal direction. The dependence on the Eexc-field strength reveals that multiple emission processes with different nonlinear orders and temporal phases contribute to each order HH, and the interference among them plays a pivotal role. This interference manifests itself as a unique phenomenon: a large HH ellipticity emerges in the course of crossover, despite the fact that GaAs hosts no magnetization or linear birefringence. These results demonstrate that not only the material's symmetry but also the ultrafast nonlinear dynamics largely affects the HH polarization, and hence, HH polarization and its Eexc-field dependence provide a useful experimental tool to probe ultrafast coherent dynamics in light-driven solid-state materials.

参考文献

[1] See, e.g., M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Elsevier, New York, 2013).

[2] I. Sodemann and L. Fu, Phys. Rev. Lett. 115, 216806 (2015).

[3] Q. Ma, S.-Y. Xu, H. Shen, D. MacNeill, V. Fatemi, T.-R. Chang, A. M. Mier Valdivia, S. Wu, Z. Du, C.-H. Hsu, S. Fang, Q. D. Gibson, K. Watanabe, T. Taniguchi, R. J. Cava, E. Kaxiras, H.-Z. Lu, H. Lin, L. Fu, N. Gedik, and P. Jarillo-Herrero, Nature (London) 565, 337 (2019).

[4] J. B. Costello, S. D. O’Hara, Q. Wu, D. C. Valovcin, L. N. Pfeiffer, K. W. West, and M. S. Sherwin, Nature (London) 599, 57 (2021).

[5] A. Sell, A. Leitenstorfer, and R. Huber, Opt. Lett. 33, 2767 (2008).

[6] H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, Appl. Phys. Lett. 98, 91106 (2011).

[7] G. Andriukaitis, T. Balciˇ unas, S. Ališauskas, A. Pugžlys, A. ¯ Baltuška, T. Popmintchev, M.-C. Chen, M. M. Murnane, and H. C. Kapteyn, Opt. Lett. 36, 2755 (2011).

[8] N. Kanda, N. Ishii, J. Itatani, and R. Matsunaga, Opt. Express 29, 3479 (2021).

[9] Y. Sanari, F. Sekiguchi, K. Nakagawa, N. Ishii, Y. Kanemitsu, and H. Hirori, Opt. Lett. 46, 5280 (2021).

[10] A. H. Chin, O. G. Calderón, and J. Kono, Phys. Rev. Lett. 86, 3292 (2001).

[11] S. Ghimire, A. D. DiChiara, E. Sistrunk, P. Agostini, L. F. DiMauro, and D. A. Reis, Nat. Phys. 7, 138 (2011).

[12] D. Golde, T. Meier, and S. W. Koch, Phys. Rev. B 77, 075330 (2008).

[13] G. Vampa, C. R. McDonald, G. Orlando, D. D. Klug, P. B. Corkum, and T. Brabec, Phys. Rev. Lett. 113, 073901 (2014).

[14] O. Schubert, M. Hohenleutner, F. Langer, B. Urbanek, C. Lange, U. Huttner, D. Golde, T. Meier, M. Kira, S. W. Koch, and R. Huber, Nat. Photonics 8, 119 (2014).

[15] Y. S. You, D. A. Reis, and S. Ghimire, Nat. Phys. 13, 345 (2017).

[16] F. Langer, M. Hohenleutner, U. Huttner, S. W. Koch, M. Kira, and R. Huber, Nat. Photonics 11, 227 (2017).

[17] T. T. Luu, M. Garg, S. Y. Kruchinin, A. Moulet, M. T. Hassan, and E. Goulielmakis, Nature (London) 521, 498 (2015).

[18] G. Vampa, T. J. Hammond, N. Thiré, B. E. Schmidt, F. Légaré, C. R. McDonald, T. Brabec, D. D. Klug, and P. B. Corkum, Phys. Rev. Lett. 115, 193603 (2015).

[19] A. J. Uzan, G. Orenstein, Á. Jiménez-Galán, C. McDonald, R. E. F. Silva, B. D. Bruner, N. D. Klimkin, V. Blanchet, T. ArusiParpar, M. Krüger, A. N. Rubtsov, O. Smirnova, M. Ivanov, B. Yan, T. Brabec, and N. Dudovich, Nat. Photonics 14, 183 (2020).

[20] N. Yoshikawa, K. Nagai, K. Uchida, Y. Takaguchi, S. Sasaki, Y. Miyata, and K. Tanaka, Nat. Commun. 10, 3709 (2019).

[21] Y. Sanari, T. Otobe, Y. Kanemitsu, and H. Hirori, Nat. Commun. 11, 3069 (2020).

[22] S. Jiang, J. Chen, H. Wei, C. Yu, R. Lu, and C. D. Lin, Phys. Rev. Lett. 120, 253201 (2018).

[23] K. Uchida, V. Pareek, K. Nagai, K. M. Dani, and K. Tanaka, Phys. Rev. B 103, L161406 (2021).

[24] H. Lakhotia, H. Y. Kim, M. Zhan, S. Hu, S. Meng, and E. Goulielmakis, Nature (London) 583, 55 (2020).

[25] H. Liu, Y. Li, Y. S. You, S. Ghimire, T. F. Heinz, and D. A. Reis, Nat. Phys. 13, 262 (2017).

[26] T. T. Luu and H. J. Wörner, Nat. Commun. 9, 916 (2018).

[27] C. P. Schmid, L. Weigl, P. Grössing, V. Junk, C. Gorini, S. Schlauderer, S. Ito, M. Meierhofer, N. Hofmann, D. Afanasiev, J. Crewse, K. A. Kokh, O. E. Tereshchenko, J. Güdde, F. Evers, J. Wilhelm, K. Richter, U. Höfer, and R. Huber, Nature (London) 593, 385 (2021).

[28] K. Kaneshima, Y. Shinohara, K. Takeuchi, N. Ishii, K. Imasaka, T. Kaji, S. Ashihara, K. L. Ishikawa, and J. Itatani, Phys. Rev. Lett. 120, 243903 (2018).

[29] N. Klemke, N. Tancogne-Dejean, G. M. Rossi, Y. Yang, F. Scheiba, R. E. Mainz, G. Di Sciacca, A. Rubio, F. X. Kärtner, and O. D. Mücke, Nat. Commun. 10, 1319 (2019).

[30] G. Ndabashimiye, S. Ghimire, M. Wu, D. A. Browne, K. J. Schafer, M. B. Gaarde, and D. A. Reis, Nature (London) 534, 520 (2016).

[31] Y. Murakami, M. Eckstein, and P. Werner, Phys. Rev. Lett. 121, 057405 (2018).

[32] P. Xia, T. Tamaya, C. Kim, F. Lu, T. Kanai, N. Ishii, J. Itatani, H. Akiyama, and T. Kato, Phys. Rev. B 104, L121202 (2021).

[33] T.-Y. Du, D. Tang, and X.-B. Bian, Phys. Rev. A 98, 063416 (2018).

[34] See Supplemental Material at http://link.aps.org/supplemental/ 10.1103/PhysRevB.106.L241201 for the details of experimental setup; reflection in the linear-response regime; zoomed-in version of Fig. 2(a); confirmation of the elliptical polarization of the HH; anisotropy and excitation-field dependence of the PL; detailed argument on the symmetry and HH polarizations; evaluation of the Keldysh parameter; and complete datasets of the polarization and anisotropy of HHs generated by the 0.36-eV excitations; also see Refs. [9,39,40].

[35] J. E. Sipe, D. J. Moss, and H. M. van Driel, Phys. Rev. B 35, 1129 (1987).

[36] D. C. Hutchings and B. S. Wherrett, Phys. Rev. B 49, 2418 (1994).

[37] Y. Sanari, H. Hirori, T. Aharen, H. Tahara, Y. Shinohara, K. L. Ishikawa, T. Otobe, P. Xia, N. Ishii, J. Itatani, S. A. Sato, and Y. Kanemitsu, Phys. Rev. B 102, 041125(R) (2020).

[38] T. Tritschler, O. D. Mücke, M. Wegener, U. Morgner, and F. X. Kärtner, Phys. Rev. Lett. 90, 217404 (2003).

[39] L. V. Keldysh, Sov. Phys. JETP 20, 1307 (1965).

[40] C. Lange, T. Maag, M. Hohenleutner, S. Baierl, O. Schubert, E. R. J. Edwards, D. Bougeard, G. Woltersdorf, and R. Huber, Phys. Rev. Lett. 113, 227401 (2014).

[41] G. Li, S. Chen, N. Pholchai, B. Reineke, P. W. H. Wong, E. Y. B. Pun, K. W. Cheah, T. Zentgraf, and S. Zhang, Nat. Mater. 14, 607 (2015).

[42] S. D. Gennaro, M. Rahmani, V. Giannini, H. Aouani, T. P. H. Sidiropoulos, M. Navarro-Cía, S. A. Maier, and R. F. Oulton, Nano Lett. 16, 5278 (2016).

[43] N. Tancogne-Dejean, O. D. Mücke, F. X. Kärtner, and A. Rubio, Nat. Commun. 8, 745 (2017).

[44] H. B. Banks, Q. Wu, D. C. Valovcin, S. Mack, A. C. Gossard, L. Pfeiffer, R.-B. Liu, and M. S. Sherwin, Phys. Rev. X 7, 041042 (2017).

[45] J. R. Chelikowsky and M. L. Cohen, Phys. Rev. B 14, 556 (1976).

参考文献をもっと見る