リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「カチオン性細胞壁結合型ペルオキシダーゼCWPO-Cはオーキシン代謝を介してアラビドプシスおよびポプラ形質転換体の成長、発生および木化を制御する」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

カチオン性細胞壁結合型ペルオキシダーゼCWPO-Cはオーキシン代謝を介してアラビドプシスおよびポプラ形質転換体の成長、発生および木化を制御する

ヨシカイ ベニテス ディエゴ アロンソ YOSHIKAY BENITEZ DIEGO ALONSO 九州大学

2023.03.20

概要

九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Plant growth, development and lignification
affected by the cationic cell-wall-bound
peroxidase (CWPO-C) via auxin catabolism in
transgenic Arabidopsis thaliana and Populus
alba
ヨシカイ ベニテス ディエゴ アロンソ

https://hdl.handle.net/2324/6787681
出版情報:Kyushu University, 2022, 博士(農学), 課程博士
バージョン:
権利関係:

Name

:ヨシカイ ベニテス ディエゴ アロンソ

Title

: Plant growth, development and lignification affected by the cationic
cell-wall-bound peroxidase (CWPO-C) via auxin catabolism in transgenic
Arabidopsis thaliana and Populus alba

(YOSHIKAY BENITEZ DIEGO ALONSO)

(カチオン性細胞壁結合型ペルオキシダーゼ CWPO-C はオーキシン代謝を
介してアラビドプシスおよびポプラ形質転換体の成長、発生および木化を
制御する)
Category:Kou

Thesis Summary

The poplar cationic cell-wall-bound peroxidase (CWPO-C) mediates the oxidative polymerization
of lignin precursors, especially sinapyl alcohols, and high molecular weight compounds that cannot
be oxidized by other plant peroxidases, including horseradish peroxidase C. Therefore, CWPO-C
has been believed to be a lignification-specific peroxidase, but direct evidence of its physiological
function was lacking. Thus, the CWPO-C expression pattern in Arabidopsis thaliana (Arabidopsis)
was determined using the β-glucuronidase (GUS) gene as a reporter. CWPO-C was expressed in
young organs, including the meristem, leaf, root, flower, and young xylem in the upper part of the
stem of Arabidopsis. Transgenic Arabidopsis plants overexpressing CWPO-C had shorter stems
compared with the wild-type control. Approximately 60% of the plants in the transgenic line with the
highest CWPO-C content had curled stems. These results indicated that CWPO-C plays a role in
cell elongation. When plants were placed horizontally, induced CWPO-C expression was detected in
the curved part of the stem during the gravitropic response. The time needed for Arabidopsis plants
overexpressing CWPO-C placed horizontally to recover vertical position (bend by 90°) was almost
double the time required for the similarly treated wild-type controls. Moreover, the auxin content was
significantly lower (10-times) in the stem tip of CWPO-C-overexpressing plants than in the wild-type
plants. These results strongly suggested that CWPO-C had pleiotropic effects on plant growth and

indole-3-acetic acid (IAA) accumulation. These effects may be mediated by altered IAA
concentration due to oxidation by CWPO-C.
The poplar homologous expression system was investigated to clarify the function of CWPO-C in
poplar. The analyses of CWPO-C gene expression and phenotypic changes with CWPO-C
overexpression and suppression in Poplar were conducted. Real-time PCR and monitoring
promoter activity of CWPO-C using GUS assay revealed that CWPO-C was strongly expressed in
immature tissues such as the upper stem, axillary buds, and young leaves, in addition to expression
in developing xylem. In transgenic poplars, overexpressing CWPO-C enhanced stem growth and
gravitropic response (shorter bending time). With suppressed CWPO-C expression, the lignin
content was reduced approximately 45% and the syringyl/guaiacyl (S/G) ratio decreased by half.
These results strongly suggest that CWPO-C plays a role in differentiation and early plant growth,
as well as in lignification.
In conclusion, the in vivo function of CWPO-C was characterized. CWPO-C was localized in the
immature tissues, such as shoot tip, young leaves, and meristems as well as young xylem in both
Arabidopsis and poplar. The overexpression of CWPO-C affected the plant growth and gravitropic
response of both plants. Especially, significant decrease of IAA content was confirmed in the
CWPO-C overexpressing Arabidopsis. These results indicated that CWPO-C was involved in plant
growth and proposed a new aspect to the role for CWPO-C as auxin catabolism. The suppression of
CWPO-C in poplar provided the evidence that CWPO-C is involved in lignification, in line with the
earlier in vitro evidence referring to the oxidization capabilities of CWPO-C over monolignols and
lignin polymers. The studies regarding the Class III peroxidases involved in auxin catabolism have
been limited. Thus, results in this study set up a new catabolic pathway for auxin in addition to the
known auxin regulating system.

この論文で使われている画像

参考文献

Abbott E, Hall D, Hamberger B, Bohlmann J (2010) Laser microdissection of conifer stem

tissues: Isolation and analysis of high quality RNA, terpene synthase enzyme activity and

terpenoid metabolites from resin ducts and cambial zone tissue of white spruce (Picea

glauca). BMC Plant Biology, 10, 106. https://doi.org/10.1186/1471-2229-10-106

Adler, E (1977). Lignin chemistry—past, present and future. Wood science and technology,

11(3), 169-218. https://doi.org/10.1007/BF00365615

Almagro L, Gómez Ros LV, Belchi-Navarro S, Bru R, Ros Barceló A, Pedreño MA (2009)

Class III peroxidases in plant defense reactions. Journal of Experimental Botany,

60(2):377-90. https://doi.org/10.1093/jxb/ern277

Aloni R (2001) Foliar and Axial Aspects of Vascular Differentiation: Hypotheses and

Evidence.

Journal

of

Plant

Growth

Regulation,

20(1).

https://doi.org/10.1007/s003440010001

Aloni R, Schwalm K, Langhans M, Ullrich CI (2003) Gradual shifts in sites of free-auxin

production during leaf-primordium development and their role in vascular differentiation

and

leaf

morphogenesis

in

Arabidopsis.

Planta,

216,

841–853.

https://doi.org/10.1007/s00425-002-0937-8

Aoyama W, Sasaki S, Matsumura S, Hirai H, Tsutsumi Y, Nishida T (2002) Sinapyl alcoholspecifc peroxidase isoenzyme catalyzes the formation of the dehydrogenative polymer

93

from

sinapyl

alcohol.

Journal

of

Wood

Science,

48:497–504.

https://doi.org/10.1007/BF00766646

Araiso T, Miyoshi K, Yamazaki I (1976) Mechanisms of electron transfer from sulfite to

horseradish peroxidase-hydroperoxide compounds. Biochemistry, 15(14), 3059-3063.

Bandurski RS, Schulze A, Dayanandan P, Kaufman PB (1984) Response to Gravity by Zea

mays Seedlings: I. Time Course of the Response. Plant physiology, 74(2), 284-288.

https://doi.org/10.1104/pp.74.2.284

Barceló AR, Pomar F (2001) Oxidation of cinnamyl alcohols and aldehydes by a basic

peroxidase from lignifying Zinnia elegans hypocotyls. Phytochemistry, 57(7), 1105-1113.

https://doi.org/10.1016/S0031-9422(01)00050-4

Barnes WJ, Anderson CT (2017) Acetyl Bromide Soluble Lignin (ABSL) Assay for Total

Lignin Quantification from Plant Biomass. Bio-Protocol Journal, 7(5):e2149.

https://doi.org/10.21769/BioProtoc.2149

Blancaflor EB, Masson PH (2003) Plant gravitropism. Unraveling the ups and downs of a

complex

process.

Plant

physiology,

133(4),

1677-1690.

https://doi.org/10.1104/pp.103.032169

Blee KA, Choi JW, O'Connell AP, Schuch W, Lewis NG, & Bolwell GP (2003) A ligninspecific peroxidase in tobacco whose antisense suppression leads to vascular tissue

modification.

Phytochemistry,

64(1),

9422(03)00212-7

94

163-176.

https://doi.org/10.1016/S0031-

Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annual Review of Plant Biology,

54:519-46. https://doi.org/10.1146/annurev.arplant.54.031902.134938

Bredmose N, Costes E (2003) Axillary Bud Growth. Growth Regulation. Encyclopedia of

Rose Science, Pages 374-381. https://doi.org/10.1016/B978-0-12-809633-8.05056-1

Campbell MM, Sederoff RR (1996) Variation in Lignin Content and Composition

(Mechanisms of Control and Implications for the Genetic Improvement of Plants). Plant

Physiology, 110(1):3-13. https://doi.org/10.1104/pp.110.1.3.

Chen Q, Dai X, De-Paoli H, Cheng Y, Takebayashi Y, Kasahara H, Kamiya Y, Zhao Y

(2014) Auxin overproduction in shoots cannot rescue auxin deficiencies in Arabidopsis

roots. Plant Cell Physiology, 55(6):1072–1079. https://doi.org/10.1093/pcp/pcu039

Cheng Y, Dai X, Zhao Y (2006) Auxin biosynthesis by the YUCCA favin monooxygenases

controls the formation of floral organs and vascular tissues in Arabidopsis. Genes and

Development, 20(13):1790–1799. https://doi.org/10.1101/gad.1415106

Clough SJ, Bent AF (1998) Floral dip: a simplifed method for Agrobacterium-mediated

transformation

of

Arabidopsis

thaliana.

Plant

Journal,

16:735–743.

https://doi.org/10.1046/j.1365-313x.1998.00343.x

Cosio C, Vuillemin L, De Meyer M, Kevers C, Penel C, Dunand C (2009) An anionic class

III peroxidase from zucchini may regulate hypocotyl elongation through its auxin oxidase

activity. Planta, 229(4):823–836. https://doi.org/10.1007/s00425-008-0876-0

95

Davies PJ (1995) The plant hormone concept: concentration, sensitivity and transport. In:

Davies PJ (ed) Plant hormones, pp 13–38. https://doi.org/10.1007/978-94-011-0473-9_2

Davies PJ (2010) The plant hormones: their nature, occurrence, and functions. In Plant

hormones (pp. 1-15). Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2686-7_1

Dolphin D, Forman A, Borg DC, Fajer J, Felton RH (1971) Compounds I of catalase and

horse radish peroxidase: π-cation radicals. Proceedings of the National Academy of

Sciences, 68(3), 614-618. https://doi.org/10.1073/pnas.68.3.614

Donaldson LA (1991) Seasonal changes in lignin distribution during tracheid development

in Pinus radiata D. Don.

Wood Science and Technology, 25(1), 15-24.

https://doi.org/10.1007/BF00195553

Doyle WA, Blodig W, Veitch NC, Piontek K, Smith AT (1998) Two substrate interaction

sites in lignin peroxidase revealed by site directed mutagenesis. Biochemistry, 37:15 097–

15105. https://doi.org/10.1021/bi981633h

Euring D, Löfke C, Teichmann T, Polle A (2012) Nitrogen fertilization has diferential efects

on N allocation and lignin in two Populus species with contrasting ecology. Trees,

26:1933–1942. https://doi.org/10.1007/s00468-012-0761-0

Fernández-Pérez F, Vivar T, Pomar F, Pedreño MA, Novo-Uzal E (2015a) Peroxidase 4 is

involved in syringyl lignin formation in Arabidopsis thaliana. Journal of Plant Physiology,

175, 86-94. https://doi.org/10.1016/j.jplph.2014.11.006

96

Fernández-Pérez F, Pomar F, Pedreño MA, Novo-Uzal E (2015b) The suppression of

AtPrx52 affects fibers but not xylem lignification in Arabidopsis by altering the proportion

of syringyl units. Physiology Plantarum, 154: 395-406. https://doi.org/10.1111/ppl.12310

Freudenberg K, Neish AC (1968) Constitution and Biosynthesis of Lignin. Springer-Verlag,

Berlin, 129. http://dx.doi.org/10.1007/978-3-642-85981-6

Gabaldón C, López-Serrano M, Pedreño MA, Barceló AR (2005) Cloning and molecular

characterization of the basic peroxidase isoenzyme from Zinnia elegans, an enzyme

involved

in

lignin

biosynthesis.

Plant

physiology,

139(3),

1138-1154.

https://doi.org/10.1104/pp.105.069674

Galston WA, Bonner J, Baker SR (1953) Flavoprotein and peroxidase as components of the

indolacetic acid oxidase system of peas. Archives Biochemistry and Biophysics, Vol

42:456–470. https://doi.org/10.1016/0003-9861(53)90373-7

García-Florenciano E, Calderón AA, R. Muñoz R, Ros Barceló A (1992) The

Decarboxylative Pathway of lndole-3-Acetic Acid Catabolism is not Functional in

Grapevine Protoplasts. Journal of Experimental Botany, Volume 43, Issue 5, Pages 715–

721. https://doi.org/10.1093/jxb/43.5.715

Gaspar T, Kevers C, Hausman JF, Ripetti V (1994) Peroxidase activity and endogenous free

auxin during adventitious root formation. In: Lumsden, P.J., Nicholas, J.R., Davies, W.J.

(eds) Physiology, Growth and Development of Plants in Culture. Springer, Dordrecht.

https://doi.org/10.1007/978-94-011-0790-7_32

97

Gaspar T, Kevers C, Faivre-Rampant O, Crèvecoeur M, Penel CL, Greppin H, Dommes J

(2003) Changing concepts in plant hormone action. In Vitro Cellular and Developmental

Biology-Plant, 39, 85–106. https://doi.org/10.1079/IVP2002393

Gazaryan IG, Lagrimini LM, Ashby GA, Thorneley RN (1996) Mechanism of indole-3acetic acid oxidation by plant peroxidases: anaerobic stopped-flow spectrophotometric

studies

on

horseradish

and

tobacco

peroxidases.

Biochemical

Journal,

https://doi.org/10.1042/bj3130841.

Goring DAI, Saka S, Higuchi T (1988) Localization of lignins in wood cell walls.

Biosynthesis and biodegradation of wood components, 51-62. Academic Press Inc.

Gutjahr C, Riemann M, Müller A (2005) Cholodny–went revisited: a role for jasmonate in

gravitropism of rice coleoptiles. Planta, 222:575–585. https://doi.org/10.1007/s00425005-0001-6

Harris RZ, Newmyer SL, De Montellano PO (1993) Horseradish peroxidase-catalyzed twoelectron oxidations. Oxidation of iodide, thioanisoles, and phenols at distinct sites.

Journal of Biological Chemistry, 268(3), 1637-1645. https://doi.org/10.1016/S00219258(18)53900-4

Herrero J, Fernández-Pérez F, Yebra T, Novo-Uzal E, Pomar F, Pedreño MA, Cuello J, Guéra

A, Esteban-Carrasco A, Zapata JM (2013) Bioinformatic and functional characterization

of the basic peroxidase 72 from Arabidopsis thaliana involved in lignin biosynthesis.

Planta, 237, 1599–1612. https://doi.org/10.1007/s00425-013-1865-5

98

Herrero J, Esteban-Carrasco A, Zapata JM (2014) Arabidopsis thaliana peroxidases involved

in lignin biosynthesis: In silico promoter analysis and hormonal regulation. Plant

Physiology and Biochemistry, 80:192-202. https://doi.org/10.1016/j.plaphy.2014.03.027

Hinman RL, Lang J (1965) Peroxidase-catalyzed oxidation of indole3-acetic acid.

Biochemistry, 4(1):144–158. https://doi.org/10.1021/bi00877a023

Hoffmann N, Benske A, Betz H, Schuetz M, Samuels AL (2020) Laccases and Peroxidases

Co-Localize in Lignified Secondary Cell Walls throughout Stem Development. Plant

Physiology, 184(2):806-822. https://doi.org/10.1104/pp.20.00473

Hoson T (1993) Regulation of polysaccharide breakdown during auxin-induced cell wall

loosening.

Journal

of

Plant

Research,

106:

369–381.

https://doi.org/10.1007/BF02345982

Humphreys JM, Chapple C (2002). Rewriting the lignin roadmap. Current opinion in plant

biology, 5(3), 224-229. https://doi.org/10.1016/S1369-5266(02)00257-1

Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: betaglucuronidase as a

sensitive and versatile gene fusion marker in higher plants. EMBO Journal, 6:3901–3907.

https://doi.org/10.1002/j.1460-2075.1987.tb02730.x

Jemmat AM, Ranocha P, Le Ru A, Neel M, Jauneau A, Raggi S, Ferrari S, Burlat V, Dunand

C (2020) Coordination of five class III peroxidase-encoding genes for early germination

events

of

Arabidopsis

thaliana.

https://doi.org/10.1016/j.plantsci.2020.110565

99

Plant

Science,

Jin J, Hewezi T, Baum TJ (2011) Arabidopsis peroxidase AtPRX53 influences cell

elongation and susceptibility to Heterodera schachtii. Plant signaling & behavior, 6(11),

1778-1786. https://doi.org/10.4161/psb.6.11.17684

Kawaoka A, Kawamoto T, Moriki H, Murakami A, Murakami K, Yoshida K, Sekine M,

Takano M, Shinmyo A (1994) Growth-stimulation of tobacco plant introduced the

horseradish peroxidase gene prxC1a. Journal of fermentation and bioengineering, 78(1),

49-53. https://doi.org/10.1016/0922-338X(94)90177-5

Kawaoka A, Matsunaga E, Endo S, Kondo S, Yoshida K, Shinmyo A, Ebinuma H (2003)

Ectopic Expression of a Horseradish Peroxidase Enhances Growth Rate and Increases

Oxidative Stress Resistance in Hybrid Aspen. Plant Physiology, 132(3), 1177-1185.

https://doi.org/10.1104/pp.102.019794

Kijidani Y, Ohshiro N, Iwata D, Nagamine M, Nishiyama T, Matsumura J, Koga S (2014)

Variation of indole acetic acid (IAA) amounts in cambial-region tissues in 7- and 24-yearold sugi (Cryptomeria japonica) trees. Journal of Wood Science, 60:177–185.

https://doi.org/10.1007/s10086-014-1394-2

Kobayashi S, Nakano M, Kimura T, Schaap AP (1987) On the mechanism of the peroxidasecatalyzed oxygen-transfer reaction. Biochemistry, 26(16), 5019-5022.

Kowalczyk M, Sandberg G (2001) Quantitative Analysis of Indole-3-Acetic Acid

Metabolites in Arabidopsis, Plant Physiology, Volume 127, Issue 4, Pages 1845–

1853. https://doi.org/10.1104/pp.010525

100

Kunieda T, Shimada T, Kondo M, Nishimura M, Nishitani K, Hara Nishimura I (2013)

Spatiotemporal secretion of PEROXIDASE36 is required for seed coat mucilage

extrusion

in

Arabidopsis.

Plant

Cell,

25:1355–1367.

https://doi.org/10.1105/tpc.113.110072

Lagrimini LM, Gingas V, Finger F, Rothstein S, Liu T (1997) Characterization of Antisense

Transformed Plants Deficient in the Tobacco Anionic Peroxidase. Plant Physiology,

114(4):1187-1196. https://doi.org/10.1104/pp.114.4.1187

Leopold AC (1955) Auxins and Plant Growth. University of California Press, Berkeley and

Los Angeles.

Li L, Popko JL, Umezawa T, Chiang VL (2000) 5-Hydroxyconiferyl aldehyde modulates

enzymatic methylation for syringyl monolignol formation, a new view of monolignol

biosynthesis in angiosperms. Journal of Biological Chemistry, 275(9), 6537-6545.

https://doi.org/10.1074/jbc.275.9.6537

Li L, Cheng XF, Leshkevich J, Umezawa T, Harding SA, Chiang VL (2001) The last step of

syringyl monolignol biosynthesis in angiosperms is regulated by a novel gene encoding

sinapyl

alcohol

dehydrogenase.

The

Plant

Cell,

13(7),

1567-1586.

https://doi.org/10.1105/TPC.010111

Li Y, Kajita S, Kawai S, Katayama Y, Morohoshi N (2003) Down-regulation of an anionic

peroxidase in transgenic aspen and its effect on lignin characteristics. Journal of Plant

Research, 116, 175–182. https://doi.org/10.1007/s10265-003-0087-5

101

Liszkay A, Kenk B, Schopfer P (2003) Evidence for the involvement of cell wall peroxidase

in the generation of hydroxyl radicals mediating extension growth. Planta, 217:658–667.

https://doi.org/10.1007/s00425-003-1028-1

Liszkay A, van der Zalm E, Schopfer P (2004) Production of reactive oxygen intermediates

(O2−, H2O2, and OH) by maize roots and their role in wall loosening and elongation

growth. Plant physiology, 136(2), 3114-3123. https://doi.org/10.1104/pp.104.044784

Lu F, Ralph J (1997) Derivatization followed by reductive cleavage (DFRC method), a new

method for lignin analysis: protocol for analysis of DFRC monomers. Journal of

Agricultural and Food Chemistry, 45(7), 2590-2592. https://doi.org/10.1021/jf970258h

Ludwig-Müller J (2011) Auxin conjugates: their role for plant development and in the

evolution of land plants. Journal of Experimental Botany, 62 (6): 1757–1773.

https://doi.org/10.1093/jxb/erq412

Marjamaa K, Hildén K, Kukkola E, Lehtonen M, Holkeri H, Haapaniemi P, Koutaniemi S,

Teeri TH, Fagerstedt K, Lundell T (2006) Cloning, characterization and localization of

three novel class III peroxidases in lignifying xylem of Norway spruce (Picea abies).

Plant molecular biology, 61(4), 719-732. https://doi.org/10.1007/s11103-006-0043-6

Mäder M, Nessel A, Bopp M (1977) Über die physiologische Bedeutung der PeroxidaseIsoenzymgruppen des Tabaks anhand einiger biochemischer Eigenschaften: II. pHOptima,

Michaelis-Konstanten,

Maximale

Oxidationsraten.

Zeitschrift

für

Pflanzenphysiologie, 82(3), 247-260. https://doi.org/10.1016/S0044-328X(77)80059-7

102

Miki Y, Calviño FR, Pogni R, Giansanti S, Ruiz-Dueñas FJ, Martínez MJ, Basosi R, Romero

A, Martínez AT (2011) Crystallographic, kinetic, and spectroscopic study of the first

ligninolytic peroxidase presenting a catalytic tyrosine. Journal of Biological Chemistry,

286:15525–15534. https://doi.org/10.1074/jbc.M111.220996

Moss TH, Ehrenberg A, Bearden AJ (1969) Mössbauer spectroscopic evidence for the

electronic configuration of iron in horseradish peroxidase and its peroxide derivatives.

Biochemistry, 8(10), 4159-4162.

Muday GK (2001) Auxins and tropisms. Journal of plant growth regulation, 20(3).

Muday GK, Murphy AS (2002) An emerging model of auxin transport regulation. The Plant

Cell, 14(2), 293-299. https://doi.org/10.1105/tpc.140230

Müller K, Linkies A, Vreeburg RA, Fry SC, Krieger-Liszkay A, Leubner-Metzger G (2009)

In vivo cell wall loosening by hydroxyl radicals during cress seed germination and

elongation

growth.

Plant

Physiology,

150:

1855–1865.

https://doi.org/10.1104/pp.109.139204

Nanasato Y, Kido M, Kato A, Ueda T, Suharsono S, Widyastuti U, Tsujimoto H, Akashi K

(2015) Efficient genetic transformation of Jatropha curcas L. by means of vacuum

infiltration combined with filter-paper wicks. In Vitro Cellular and. Devevelopmental.

Biology-Plant 51, 399–406. https://doi.org/10.1007/s11627-015-9703-z

103

Nishiguchi M, Yoshida K, Mohri T, Igasaki T, Shinohara K (2006) An improved

transformation system for Lombardy poplar (Populus nigra var. italica). Journal of

Forestry Research, 11:175–180. https://doi.org/10.1007/s10310-006-0203-1

Olson PD, Varner JE (1993) Hydrogen peroxide and lignification. The Plant Journal, 4(5),

887-892. https://doi.org/10.1046/j.1365-313X.1993.04050887.x

Osakabe K, Koyama H, Kawai S, Katayama Y, Morohoshi N (1995) Molecular cloning of

two tandemly arranged peroxidase genes from Populus kitakamiensis and their differential

regulation

in

the

stem.

Plant

molecular

biology,

28(4),

677-689.

https://doi.org/10.1007/BF00021193

Osakabe K, Tsao CC, Li L, Popko JL, Umezawa T, Carraway DT, Smeltzer RH, Joshi CP,

Chiang VL (1999) Coniferyl aldehyde 5-hydroxylation and methylation direct syringyl

lignin biosynthesis in angiosperms. Proceedings of the National Academy of Sciences,

96(16), 8955-8960. https://doi.org/10.1073/pnas.96.16.8955

Østergaard L, Teilum K, Mirza O, Mattsson O, Petersen M, Welinder KG, Mundy J, Gajhede

M, Henriksen A (2000) Arabidopsis ATP A2 peroxidase. Expression and high-resolution

structure of a plant peroxidase with implications for lignification. Plant Molecular Biology,

44(2), 231-243. https://doi.org/10.1023/A:1006442618860

Parvathi K, Chen F, Guo D, Blount JW, Dixon RA (2001) Substrate preferences of Omethyltransferases in alfalfa suggest new pathways for 3-O-methylation of monolignols.

The Plant Journal, 25: 193-202. https://doi.org/10.1111/j.1365-313X.2001.00956.x

104

Pickard BG (1985) Roles of Hormones in Phototropism. In: Pharis, R.P., Reid, D.M. (eds)

Hormonal Regulation of Development III. Encyclopedia of Plant Physiology, vol 11.

Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-67734-2_11

Pradhan Mitra P, Loqué D (2014) Histochemical staining of Arabidopsis thaliana secondary

cell

wall

elements.

Journal

of

Visualized

Experiments,

(87):51381.

https://doi.org/10.3791/51381

Ruiz-Dueñas FJ, Morales M, Garcia E, Miki Y, Martínez MJ, Martínez AT (2009) Substrate

oxidation sites in versatile peroxidase and other basidiomycete peroxidases. Journal of

Experimental Botany, 60:441–452. https://doi.org/10.1093/jxb/ern261

Rakusová H, Gallego-Bartolomé J, Vanstraelen M, Robert HS, Alabadí D, Blázquez MA,

Benková E, Friml J (2011) Polarization of PIN3-dependent auxin transport for hypocotyl

gravitropic response in Arabidopsis thaliana. The Plant Journal, 67:817–826.

https://doi.org/10.1111/j.1365-313X.2011.04636.x

Ren LL, Liu YJ, Liu HJ, Qian TT, Qi LW, Wang XR, Zeng QY (2014) Subcellular

relocalization and positive selection play key roles in the retention of duplicate genes of

Populus

class

III

peroxidase

family.

Plant

Cell,

26:

2404–2419.

https://doi.org/10.1105/tpc.114.124750

Renard, J, Martínez-Almonacid, I, Sonntag, A, Molina I, Moya-Cuevas J, Bissoli G, MuñozBertomeu J, Faus I, Niñoles R, Shigeto J, Tsutsumi Y, Gadea J, Serrano R, Bueso E (2020)

PRX2 and PRX25, peroxidases regulated by COG1, are involved in seed longevity in

Arabidopsis. Plant Cell Environment, 43: 315– 326. https://doi.org/10.1111/pce.13656

105

Salisbury FB, Gillespie L, Rorabaugh P (1988) Gravitropism in higher plant shoots. Plant

Physiology, 88:1186–1194. https://doi.org/10.1104/pp.88.4.1186

Samuels A, Rensing K, Douglas C, Mansfield S, Dharmawardhana D, & Ellis B (2002).

Cellular machinery of wood production: differentiation of secondary xylem in Pinus

contorta var. latifolia. Planta, 216, 72-82. https://doi.org/10.1007/s00425-002-0884-4

Santiago R, Barros-Rios J, Malvar RA (2013) Impact of Cell Wall Composition on Maize

Resistance to Pests and Diseases. International Journal of Molecular Sciences,

14(4):6960-6980. https://doi.org/10.3390/ijms14046960

Sarkanen KV, Ludwig CH (1971) Lignins, Occurrence, Formation, Structure and Reactions.

John Wiley & Sons, Inc., New York.

Sasaki S, Nishida T, Tsutsumi Y, Kondo R (2004) Lignin dehydrogenative polymerization

mechanism: a poplar cell wall peroxidase directly oxidizes polymer lignin and produces

in vitro dehydrogenative polymer rich in beta-O-4 linkage. FEBS Letters, 562:197–201.

https://doi.org/10.1016/S0014-5793(04)00224-8

Sasaki S, Baba K, Nishida T, Tsutsumi Y, Kondo R (2006) The cationic cell-wall-peroxidase

having oxidation ability for polymeric substrate participates in the late stage of

lignification

of

Populus

alba

L.

Plant

Molecular

Biology,

62:797–807.

https://doi.org/10.1007/s11103-006-9057-3

Sasaki S, Nonaka D, Wariishi H, Tsutsumi Y, Kondo R (2008) Role of Tyr residues on the

protein surface of cationic cell-wall-peroxidase (CWPO-C) from poplar: potential

106

oxidation sites for oxidative polymerization of lignin. Phytochemistry, 69:348–355.

https://doi.org/10.1016/j.phytochem.2007.08.020

Schmid J, & Amrhein N (1995) Molecular organization of the shikimate pathway in higher

plants. Phytochemistry, 39(4), 737-749. https://doi.org/10.1016/0031-9422(94)00962-S

Schwark A, Schierle J (1992) Interaction of ethylene and auxin in the regulation of hook

growth I the role of auxin in different growing regions of the hypocotyl hook of Phaseolus

vulgaris. Journal of Plant Physiology, 140(5), 562-570. https://doi.org/10.1016/S01761617(11)80790-X

Shigeto J, Itoh Y, Tsutsumi Y, Kondo R (2012) Identification of Tyr74 and Tyr177 as

substrate oxidation sites in cationic cell wall-bound peroxidase from Populus alba L.

FEBS Journal, 279:348–357. https://doi.org/10.1111/j.1742-4658.2011.08429.x

Shigeto J, Kiyonaga Y, Fujita K, Kondo R, Tsutsumi Y (2013) Putative cationic cell-wallbound peroxidase homologues in Arabidopsis, AtPrx2, AtPrx25, and AtPrx71, are

involved in lignification. Journal of Agricultural and Food Chemistry, 61:3781–3788.

https://doi.org/10.1021/jf400426g

Shigeto J, Nagano M, Fujita K, Tsutsumi Y (2014) Catalytic profile of Arabidopsis

peroxidases, AtPrx-2, 25 and 71, contributing to stem lignification. PLoS ONE,

9(8):e105332. https://doi.org/10.1371/journal.pone.0105332

107

Shigeto J, Itoh Y, Hirao S, Ohira K, Fujita K, Tsutsumi Y (2015) Simultaneously disrupting

AtPrx2, AtPrx25 and AtPrx71 alters lignin content and structure in Arabidopsis stem.

Journal of Integrative Plant Biology, 57:349–356. https://doi.org/10.1111/jipb.12334

Shigeto J and Tsutsumi Y (2016) Diverse functions and reactions of class III peroxidases.

New Phytologist, 209: 1395-1402. https://doi.org/10.1111/nph.13738

Sieburth LE (1999) Auxin is required for leaf vein pattern in Arabidopsis. Plant Physiology,

121(4), 1179-1190. https://doi.org/10.1104/pp.121.4.1179

Sitbon F, Hennion S, Sundberg B, Little CH, Olsson O, Sandberg G (1992) Transgenic

Tobacco Plants Coexpressing the Agrobacterium tumefaciens iaaM and iaaH Genes

Display Altered Growth and Indoleacetic Acid Metabolism. Plant Physiology,

99(3):1062-9. https://doi.org/10.1104/pp.99.3.1062

Sitter AJ, Reczek CM, Terner J (1985) Heme-linked ionization of horseradish peroxidase

compound II monitored by the resonance Raman Fe (IV)= O stretching vibration. Journal

of

Biological

Chemistry,

260(12),

7515-7522.

https://doi.org/10.1016/S0021-

9258(17)39637-0

Song C, Lu L, Guo Y, Xu H, Li R (2019) Efficient Agrobacterium-Mediated Transformation

of the Commercial Hybrid Poplar Populus Alba × Populus glandulosa Uyeki.

International

Journal

of

Molecular

https://doi.org/10.3390/ijms20102594

108

Sciences,

20,

2594.

Steeves V, Förster H, Pommer U, Savidge R (2001) Coniferyl alcohol metabolism in

conifers—I. Glucosidic turnover of cinnamyl aldehydes by UDPG: coniferyl alcohol

glucosyltransferase

from

pine

cambium.

Phytochemistry,

57(7),

1085-1093.

https://doi.org/10.1016/S0031-9422(01)00107-8

Takata N, Eriksson ME (2012) A simple and efficient transient transformation for hybrid

aspen

(Populus

tremula

P.

tremuloides).

Plant

Methods,

8,

30.

https://doi.org/10.1186/1746-4811-8-30

Takeuchi M, Watanabe A, Tamura M, Tsutsumi Y (2018) The gene expression analysis of

Arabidopsis thaliana ABC transporters by real-time PCR for screening monolignoltransporter

candidates.

Journal

of

Wood

Science,

64,

477–484.

https://doi.org/10.1007/s10086-018-1733-9

Tanaka H, Dhonukshe P, Brewer PB, Friml J (2006) Spatiotemporal asymmetric auxin

distribution: a means to coordinate plant development. Cellular and Molecular Life

Sciences, 63:2738–2754. https://doi.org/10.1007/s00018-006-6116-5

Teichmann T, Bolu-Arianto WH, Olbrich A, Langenfeld-Heyser R, Göbel C, Grzeganek P,

Feussner I, Hänsch R, Polle A (2008) GH3::GUS reflects cell-specific developmental

patterns and stress-induced changes in wood anatomy in the poplar stem. Tree Physiology,

28(9):1305-15. https://doi.org/10.1093/treephys/28.9.1305

Theorell H, Ehrenberg A (1952) Magnetic properties of some peroxide compounds of

myoglobin, peroxidase and catalase. Archives of Biochemistry and Biophysics, 41(2), 442461. https://doi.org/10.1016/0003-9861(52)90473-6

109

Thimann, KV (1969) The auxins. In: Wilkins, M. B., ed. The Physiology of Plant Growth

and Development. McGraw-Hill Publishing Company Limited, London. pp. 1–45.

Tsutsumi Y, Nishida T, Sakai K (1994) Lignin biosynthesis in woody angiosperm tissues III.

Isolation of substrate-specific peroxidases related to the dehydrogenative polymerization

of sinapyl and coniferyl alcohols from Populus callus cultures. Mokuzai Gakkaishi 40:

1348-1354

Tsutsumi Y, Matsui K, Sakai K (1998) Substrate-Specific Peroxidases in Woody

Angiosperms and Gymnosperms Participate in Regulating the Dehydrogenative

Polymerization of Syringyl and Guaiacyl Type Lignins. Holzforschung, 52(3), 275–281.

https://doi.org/10.1515/hfsg.1998.52.3.275

Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ (1997) Aux/IAA proteins repress expression

of reporter genes containing natural and highly active synthetic auxin response elements.

The Plant Cell, 9(11), 1963-1971. https://doi.org/10.1105/tpc.9.11.1963

Vanneste S, Friml J (2009) Auxin: a trigger for change in plant development. Cell, 136:1005–

1016. https://doi.org/10.1016/j.cell.2009.03.001

Vatulescu AD, Fortunato AS, Sá MC, Amâncio S, Ricardo CP, Jackson PA (2004) Cloning

and characterisation of a basic IAA oxidase associated with root induction in Vitis vinifera.

Plant

Physiology

and

https://doi.org/10.1016/j.plaphy.2004.06.009

110

Biochemistry,

42:609–615.

Vitha S, Beneš K, Michalová M, Ondřej M (1993) Quantitative β-glucuronidase assay in

transgenic plants. Biologia Plantarum, 35, 151–155. https://doi.org/10.1007/BF02921141

Waldrum JD, Davies E (1981) Subcellular Localization of IAA Oxidase in Peas. Plant

Physiology, 68(6):1303-7. https://doi.org/10.1104/pp.68.6.1303

Weinstein LH; Porter CA; Laurencot HJ (1962) Role of the Shikimic Acid Pathway in the

Formation of Tryptophan in Higher Plants : Evidence for an Alternative Pathway in the

Bean. Nature, 194 (4824): 205–206. https://doi.org/10.1038/194205a0

Welinder KG (1992) Superfamily of plant, fungal and bacterial peroxidases. Current Opinion

in Structural Biology, 2(3), 388-393. https://doi.org/10.1016/0959-440X(92)90230-5

Went FW, Thimann KV (1937) Phytohormones. Phytohormones. MacMillan Company,

New York.

Yamauchi K, Yasuda S, Hamada K, Tsutsumi Y, Fukushima K (2003) Multiform

biosynthetic pathway of syringyl lignin in angiosperms. Planta, 216, 496–501.

https://doi.org/10.1007/s00425-002-0865-7

Yoshikay-Benitez DA, Yokoyama Y, Ohira, K, Fujita K, Tomie A, Kijidani Y, Shigeto J,

Tsutsumi Y (2022) Populus alba cationic cell-wall-bound peroxidase (CWPO-C)

regulates the plant growth and affects auxin concentration in Arabidopsis thaliana.

Physiology

and

Molecular

Biology

https://doi.org/10.1007/s12298-022-01241-0

111

of

Plants,

28,

1671–1680.

Zhang J, Lin JE, Harris C, Campos Mastrotti Pereira F, Wu F, Blakeslee JJ, & Peer WA

(2016). DAO1 catalyzes temporal and tissue-specific oxidative inactivation of auxin in

Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 113(39), 1101011015. https://doi.org/10.1073/pnas.1604769113

Zhang L, Wang T, Jiao S, Hao C, Mao Z (2007) Effect of Steam-Explosion on

Biodegradation of Lignin in Wheat Straw. ASAE Annual Meeting, 077076.

https://doi.org/10.13031/2013.22959

Zipor G, Oren-Shamir M (2013) Do vacuolar peroxidases act as plant caretakers? Plant

Science, 199–200:41–47. https://doi.org/10.1016/j.plantsci.2012.09.018

112

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る