リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A type 2C protein phosphatase activates high-affinity nitrate uptake by dephosphorylating NRT2.1」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A type 2C protein phosphatase activates high-affinity nitrate uptake by dephosphorylating NRT2.1

Ohkubo, Yuri Kuwata, Keiko Matsubayashi, Yoshikatsu 名古屋大学

2021.03

概要

The nitrate transporter NRT2.1, which plays a central role in high-affinity nitrate uptake in roots, is activated at the post-translational level in response to nitrogen (N) starvation. However, the critical enzymes required for the post-translational activation of NRT2.1 remain to be identified. Here, we show that a type 2C protein phosphatase, designated CEPD-induced phosphatase (CEPH), activates high-affinity nitrate uptake by directly dephosphorylating Ser501 of NRT2.1, a residue that functions as a negative phospho-switch in Arabidopsis. CEPH is predominantly expressed in epidermal and cortex cells in roots and is upregulated by N starvation via a CEPDL2/CEPD1/2-mediated long-distance signalling from shoots. The loss of CEPH leads to marked decreases in high-affinity nitrate uptake, tissue nitrate content and plant biomass. Collectively, our results identify CEPH as a crucial enzyme in the N-starvation-dependent activation of NRT2.1 and provide molecular and mechanistic insights into how plants regulate high-affinity nitrate uptake at the post-translational level in response to the N environment.

参考文献

1. Laugier, E., Bouguyon, E., Mauries, A., Tillard, P., Gojon, A. & Lejay, L. Regulation of high-affinity nitrate uptake in roots of Arabidopsis depends predominantly on posttranscriptional control of the NRT2.1/NAR2.1 transport system. Plant Physiol 158, 1067-1078 (2012).

2. Jacquot, A., Chaput, V., Mauries, A., Li, Z., Tillard, P., Fizames, C., Bonillo, P., Bellegarde, F., Laugier, E., Santoni, V., Hem, S., Martin, A., Gojon, A., Schulze, W. & Lejay, L. NRT2.1 C-terminus phosphorylation prevents root high affinity nitrate uptake activity inArabidopsis thaliana. New Phytol 228, 1038-1054 (2020).

3. Ohkubo, Y., Tanaka, M., Tabata, R., Ogawa-Ohnishi, M. & Matsubayashi, Y. Shoot- to-root mobile polypeptides involved in systemic regulation of nitrogen acquisition. Nat Plants 3, 17029 (2017).

4. Ota, R., Ohkubo, Y., Yamashita, Y., Ogawa-Ohnishi, M. & Matsubayashi, Y. Shoot- to-root mobile CEPD-like 2 integrates shoot nitrogen status to systemically regulate nitrate uptake in Arabidopsis. Nat Commun 11, 641 (2020).

5. Wang, Y.Y., Cheng, Y.H., Chen, K.E. & Tsay, Y.F. Nitrate transport, signaling, and use efficiency. Annu Rev Plant Biol 69, 85-122 (2018).

6. Wang, R. & Crawford, N.M. Genetic identification of a gene involved in constitutive, high-affinity nitrate transport in higher plants. Proc Natl Acad Sci U S A 93, 9297- 9301 (1996).

7. Filleur, S., Dorbe, M.F., Cerezo, M., Orsel, M., Granier, F., Gojon, A. & Daniel- Vedele, F. An Arabidopsis T-DNA mutant affected in Nrt2 genes is impaired in nitrate uptake. FEBS Lett 489, 220-224 (2001).

8. Kiba, T., Feria-Bourrellier, A.B., Lafouge, F., Lezhneva, L., Boutet-Mercey, S., Orsel, M., Brehaut, V., Miller, A., Daniel-Vedele, F., Sakakibara, H. & Krapp, A. The Arabidopsis nitrate transporter NRT2.4 plays a double role in roots and shoots of nitrogen-starved plants. Plant Cell 24, 245-258 (2012).

9. Tsay, Y.F., Schroeder, J.I., Feldmann, K.A. & Crawford, N.M. The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter. Cell 72, 705-713 (1993).

10. Huang, N.C., Liu, K.H., Lo, H.J. & Tsay, Y.F. Cloning and functional characterization of an Arabidopsis nitrate transporter gene that encodes a constitutive component of low-affinity uptake. Plant Cell 11, 1381-1392 (1999).

11. Liu, K.H., Huang, C.Y. & Tsay, Y.F. CHL1 is a dual-affinity nitrate transporter of arabidopsis involved in multiple phases of nitrate uptake. Plant Cell 11, 865-874 (1999).

12. Malagoli, P., Lainé, P., Le Deunff, E., Rossato, L., Ney, B. & Ourry, A. Modeling nitrogen uptake in oilseed rape cv Capitol during a growth cycle using influx kinetics of root nitrate transport systems and field experimental data. Plant Physiol 134, 388- 400 (2004).

13. Cerezo, M., Tillard, P., Filleur, S., Munos, S., Daniel-Vedele, F. & Gojon, A. Major alterations of the regulation of root NO3– uptake are associated with the mutation of Nrt2.1 and Nrt2.2 genes in Arabidopsis. Plant Physiol 127, 262-271 (2001).

14. Lejay, L., Tillard, P., Lepetit, M., Olive, F., Filleur, S., Daniel-Vedele, F. & Gojon, A. Molecular and functional regulation of two NO3– uptake systems by N- and C-status of Arabidopsis plants. Plant J 18, 509-519 (1999).

15. Gansel, X., Munos, S., Tillard, P. & Gojon, A. Differential regulation of the NO3– and NH4+ transporter genes AtNrt2.1 and AtAmt1.1 in Arabidopsis: relation with long- distance and local controls by N status of the plant. Plant J 26, 143-155 (2001).

16. Fraisier, V., Gojon, A., Tillard, P. & Daniel-Vedele, F. Constitutive expression of a putative high-affinity nitrate transporter in Nicotiana plumbaginifolia: evidence for post-transcriptional regulation by a reduced nitrogen source. Plant J 23, 489-496 (2000).

17. Wirth, J., Chopin, F., Santoni, V., Viennois, G., Tillard, P., Krapp, A., Lejay, L., Daniel-Vedele, F. & Gojon, A. Regulation of root nitrate uptake at the NRT2.1 protein level in Arabidopsis thaliana. J Biol Chem 282, 23541-23552 (2007).

18. Jacquot, A., Li, Z., Gojon, A., Schulze, W. & Lejay, L. Post-translational regulation of nitrogen transporters in plants and microorganisms. J Exp Bot 68, 2567-2580 (2017).

19. Engelsberger, W.R. & Schulze, W.X. Nitrate and ammonium lead to distinct global dynamic phosphorylation patterns when resupplied to nitrogen-starved Arabidopsis seedlings. Plant J 69, 978-995 (2012).

20. Menz, J., Li, Z., Schulze, W.X. & Ludewig, U. Early nitrogen-deprivation responses in Arabidopsis roots reveal distinct differences on transcriptome and (phospho-) proteome levels between nitrate and ammonium nutrition. Plant J 88, 717-734 (2016).

21. Zou, X., Liu, M.Y., Wu, W.H. & Wang, Y. Phosphorylation at Ser28 stabilizes the Arabidopsis nitrate transporter NRT2.1 in response to nitrate limitation. J Integr Plant Biol (2019).

22. Ohyama, K., Ogawa, M. & Matsubayashi, Y. Identification of a biologically active, small, secreted peptide in Arabidopsis by in silico gene screening, followed by LC- MS-based structure analysis. Plant Journal 55, 152-160 (2008).

23. Tabata, R., Sumida, K., Yoshii, T., Ohyama, K., Shinohara, H. & Matsubayashi, Y. Perception of root-derived peptides by shoot LRR-RKs mediates systemic N-demand signaling. Science 346, 343-346 (2014).

24. Fuchs, S., Grill, E., Meskiene, I. & Schweighofer, A. Type 2C protein phosphatases in plants. FEBS J 280, 681-693 (2013).

25. Bhaskara, G.B., Wong, M.M. & Verslues, P.E. The flip side of phospho-signalling: Regulation of protein dephosphorylation and the protein phosphatase 2Cs. Plant Cell Environ 42, 2913-2930 (2019).

26. Wang, Y.F., Liao, Y.Q., Wang, Y.P., Yang, J.W., Zhang, N. & Si, H.J. Genome-wide identification and expression analysis of StPP2C gene family in response to multiple stresses in potato (Solarium tuberosum L.). J Integr Agr 19, 1609-1624 (2020).

27. Yang, Q., Liu, K., Niu, X.C., Wang, Q., Wan, Y.Q., Yang, F.Y., Li, G.J., Wang, Y.F. & Wang, R.G. Genome-wide Identification of PP2C Genes and Their Expression Profiling in Response to Drought and Cold Stresses in Medicago truncatula. Sci Rep- Uk 8 (2018).

28. Xue, T.T., Wang, D., Zhang, S.Z., Ehlting, J., Ni, F., Jakab, S., Zheng, C.C. & Zhong, Y. Genome-wide and expression analysis of protein phosphatase 2C in rice and Arabidopsis. Bmc Genomics 9 (2008).

29. Fan, K., Yuan, S.N., Chen, J., Chen, Y.R., Li, Z.W., Lin, W.W., Zhang, Y.Q., Liu, J.P. & Lin, W.X. Molecular evolution and lineage-specific expansion of the PP2C family in Zea mays. Planta 250, 1521-1538 (2019).

30. Komatsu, K., Nishikawa, Y., Ohtsuka, T., Taji, T., Quatrano, R.S., Tanaka, S. & Sakata, Y. Functional analyses of the ABI1-related protein phosphatase type 2C reveal evolutionarily conserved regulation of abscisic acid signaling between Arabidopsis and the moss Physcomitrella patens. Plant Molecular Biology 70, 327- 340 (2009).

31. Nelson, C.J., Huttlin, E.L., Hegeman, A.D., Harms, A.C. & Sussman, M.R. Implications of 15N-metabolic labeling for automated peptide identification in Arabidopsis thaliana. Proteomics 7, 1279-1292 (2007).

32. Bhaskara, G.B., Wen, T.N., Nguyen, T.T. & Verslues, P.E. Protein Phosphatase 2Cs and Microtubule-Associated Stress Protein 1 Control Microtubule Stability, Plant Growth, and Drought Response. Plant Cell 29, 169-191 (2017).

33. Kleinboelting, N., Huep, G., Kloetgen, A., Viehoever, P. & Weisshaar, B. GABI-Kat SimpleSearch: new features of the Arabidopsis thaliana T-DNA mutant database. Nucleic Acids Res 40, D1211-1215 (2012).

34. Zuo, J., Niu, Q.W. & Chua, N.H. Technical advance: An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants. Plant J 24, 265-273 (2000).

35. Wessel, D. & Flugge, U.I. A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem 138, 141-143 (1984).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る