リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Klotho overexpression protects against renal aging along with suppression of transforming growth factor-β1 signaling pathways」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Klotho overexpression protects against renal aging along with suppression of transforming growth factor-β1 signaling pathways

大石 展盟 広島大学

2022.01.28

概要

Chronic kidney disease (CKD) is a major life-threatening
health problem worldwide. In fact, according to the Global
Burden of Disease Study 2019, CKD affected 700 million
people globally, which resulted in more than 1.3 million
deaths in 1 yr (1). CKD progression is usually an irreversible
change, and some patients eventually develop end-stage kidney disease and require renal replacement therapy. Clinically,
renal functions decrease with aging (2), and major features of
the aging kidney are characterized by interstitial fibrosis (3),
accumulation of cell cycle-arrested cells (4), and increased
levels of oxidative stress (5). However, considering these
changes play an important role in maintaining physiological
conditions, a therapeutic strategy against the aging process
has not been established thus far. ...

この論文で使われている画像

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

F810

GBD 2019 Diseases and Injuries Collaborators. Global burden of

369 diseases and injuries in 204 countries and territories, 1990–

2019: a systematic analysis for the Global Burden of Disease Study

2019. Lancet 396: 1204–1222, 2020. doi:10.1016/S0140-6736(20)

30925-9.

Rodier F, Campisi J. Four faces of cellular senescence. J Cell Biol

192: 547–556, 2011. doi:10.1083/jcb.201009094.

Zhou XJ, Rakheja D, Yu X, Saxena R, Vaziri ND, Silva FG. The aging

kidney. Kidney Int 74: 710–720, 2008. doi:10.1038/ki.2008.319.

Collado M, Blasco MA, Serrano M. Cellular senescence in cancer

and aging. Cell 130: 223–233, 2007. doi:10.1016/j.cell.2007.07.003.

Kuro-O M. Klotho as a regulator of oxidative stress and senescence.

Biol Chem 389: 233–241, 2008. doi:10.1515/BC.2008.028.

Kuro-O M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi

T, Ohyama Y, Kurabayashi M, Kaname T, Kume E, Iwasaki H, Iida

A, Shiraki-Iida T, Nishikawa S, Nagai R, Nabeshima Y. Mutation of

the mouse klotho gene leads to a syndrome resembling ageing.

Nature 390: 45–51, 1997. doi:10.1038/36285.

Kurosu H, Yamamoto M, Clark JD, Pastor JV, Nandi A, Gurnani P,

McGuinness OP, Chikuda H, Yamaguchi M, Kawaguchi H,

Shimomura I, Takayama Y, Herz J, Kahn CR, Rosenblatt KP, Kuroo M. Suppression of aging in mice by the hormone Klotho. Science

309: 1829–1833, 2005. doi:10.1126/science.1112766.

Yamazaki Y, Imura A, Urakawa I, Shimada T, Murakami J, Aono Y,

Hasegawa H, Yamashita T, Nakatani K, Saito Y, Okamoto N,

Kurumatani N, Namba N, Kitaoka T, Ozono K, Sakai T, Hataya H,

Ichikawa S, Imel EA, Econs MJ, Nabeshima Y. Establishment of

sandwich ELISA for soluble alpha-Klotho measurement: age-dependent change of soluble alpha-Klotho levels in healthy subjects.

Biochem Biophys Res Commun 398: 513–518, 2010. doi:10.1016/j.

bbrc.2010.06.110.

Sakan H, Nakatani K, Asai O, Imura A, Tanaka T, Yoshimoto S,

Iwamoto N, Kurumatani N, Iwano M, Nabeshima Y, Konishi N,

Saito Y. Reduced renal a-Klotho expression in CKD patients and its

effect on renal phosphate handling and vitamin D metabolism. PLoS

One 9: e8630, 2014. doi:10.1371/journal.pone.0086301.

Sugiura H, Yoshida T, Shiohira S, Kohei J, Mitobe M, Kurosu H,

Kuro-O M, Nitta K, Tsuchiya K. Reduced Klotho expression level in

kidney aggravates renal interstitial fibrosis. Am J Physiol Renal

Physiol 302: F1252–F1264, 2012. doi:10.1152/ajprenal.00294.2011.

Haruna Y, Kashihara N, Satoh M, Tomita M, Namikoshi T, Sasaki T,

Fujimori T, Xie P, Kanwar YS. Amelioration of progressive renal

injury by genetic manipulation of Klotho gene. Proc Natl Acad Sci

USA 104: 2331–2336, 2007. doi:10.1073/pnas.0611079104.

Hu MC, Shi M, Gillings N, Flores B, Takahashi M, Kuro-O M, Moe

OW. Recombinant a-Klotho may be prophylactic and therapeutic for

acute to chronic kidney disease progression and uremic cardiomyopathy. Kidney Int 91: 1104–1114, 2017. doi:10.1016/j.kint.2016.10.034.

Kadoya H, Satoh M, Haruna Y, Sasaki T, Kashihara N. Klotho

attenuates renal hypertrophy and glomerular injury in Ins2Akita diabetic mice. Clin Exp Nephrol 20: 671–678, 2016. doi:10.1007/s10157015-1202-3.

Kurosu H, Ogawa Y, Miyoshi M, Yamamoto M, Nandi A,

Rosenblatt KP, Baum MG, Schiavi S, Hu M, Moe OW, Kuro-O M.

Regulation of fibroblast growth factor-23 signaling by klotho. J Biol

Chem 281: 6120–6123, 2006. doi:10.1074/jbc.C500457200.

Doi S, Zou Y, Togao O, Pastor JV, John GB, Wang L, Shiizaki K,

Gotschall R, Schiavi S, Yorioka N, Takahashi M, Boothman DA,

Kuro-O M. Klotho inhibits transforming growth factor-b1 (TGF-b1) signaling and suppresses renal fibrosis and cancer metastasis in mice.

J Biol Chem 286: 8655–8665, 2011. doi:10.1074/jbc.M110.174037.

Liu H, Fergusson MM, Castilho RM, Liu J, Cao L, Chen J, Malide D,

Rovira II, Schimel D, Kuo CJ, Gutkind JS, Hwang PM, Finkel T.

Augmented Wnt signaling in a mammalian model of accelerated

aging. Science 317: 803–806, 2007. doi:10.1126/science.1143578.

Hu MC, Shi M, Zhang J, Pastor J, Nakatani T, Lanske B, Razzaque

MS, Rosenblatt KP, Baum MG, Kuro-O M, Moe OW. Klotho: a novel

phosphaturic substance acting as an autocrine enzyme in the renal

proximal tubule. FASEB J 24: 3438–3450, 2010. doi:10.1096/fj.10154765.

Alexander RT, Woudenberg-Vrenken TE, Buurman J, Dijkman H,

van der Eerden BC, van Leeuwen JP, Bindels RJ, Hoenderop JG.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Klotho prevents renal calcium loss. J Am Soc Nephrol 20: 2371–

2379, 2009. doi:10.1681/ASN.2008121273.

Cha S-K, Hu M-C, Kurosu H, Kuro-o M, Moe O, Huang C-L.

Regulation of renal outer medullary potassium channel and renal

K þ excretion by Klotho. Mol Pharmacol 76: 38–46, 2009. doi:10.1124/

mol.109.055780.

Liu F, Wu S, Ren H, Gu J. Klotho suppresses RIG-I-mediated senescence-associated inflammation. Nat Cell Biol 13: 254–262, 2011.

doi:10.1038/ncb2167.

Meng XM, Nikolic-Paterson DJ, Hu. L. TGF-b: the master regulator

of fibrosis. Nat Rev Nephrol 12: 325–338, 2016. doi:10.1038/

nrneph.2016.

Tominaga K, Suzuki IH. TGF-b signaling in cellular senescence and

aging-related pathology. Int J Mol Sci 20: 5002, 2019. doi:10.3390/

ijms20205002.

Liu RM, Desai LP. Reciprocal regulation of TGF-b and reactive oxygen species: a perverse cycle for fibrosis. Redox Biol 6: 565–577,

2015. doi:10.1016/j.redox.2015.09.009.

Panesso MC, Shi M, Cho HJ, Paek J, Ye J, Moe OW, Hu MC. Klotho

has dual protective effects on cisplatin-induced acute kidney injury.

Kidney Int 85: 855–870, 2014. doi:10.1038/ki.2013.489.

Hall BM, Balan V, Gleiberman AS, Strom E, Krasnov P, Virtuoso

LP, Rydkina E, Vujcic S, Balan K, Gitlin I, Leonova K, Polinsky A,

Chernova OB, Gudkov AV. Aging of mice is associated with p16

(Ink4a)- and b-galactosidase-positive macrophage accumulation that

can be induced in young mice by senescent cells. Aging (Albany

NY) 8: 1294–1315, 2016. doi:10.18632/aging.100991.

Rule AD, Amer H, Cornell LD, Taler SJ, Cosio FG, Kremers WK,

Textor SC, Stegall MD. The association between age and nephrosclerosis on renal biopsy among healthy adults. Ann Intern Med 152:

561–567, 2010. doi:10.7326/0003-4819-152-9-201005040-00006.

Yang HC, Fogo AB. Fibrosis and renal aging. Kidney Int Suppl (2011)

4: 75–78, 2014. doi:10.1038/kisup.2014.14.

LeBleu VS, Taduri G, O'Connell J, Teng Y, Cooke VG, Woda C,

Sugimoto H, Kalluri R. Origin and function of myofibroblasts in kidney fibrosis. Nat Med 19: 1047–1053, 2013. doi:10.1038/nm.3218.

Kuro-O M. Klotho and aging. Biochim Biophys Acta 1790: 1049–

1058, 2009. doi:10.1016/j.bbagen.2009.02.005.

Ahsan H. 3-Nitrotyrosine: a biomarker of nitrogen free radical species modified proteins in systemic autoimmunogenic conditions.

Hum Immunol 74: 1392–1399, 2013. doi:10.1016/j.humimm.2013.06.

009.

Candas D, Li JJ. MnSOD in oxidative stress response-potential regulation via mitochondrial protein influx. Antioxid Redox Signal 20:

1599–1617, 2014. doi:10.1089/ars.2013.5305.

Zhang YE. Non-Smad pathways in TGF-beta signaling. Cell Res 19:

128–139, 2009. doi:10.1038/cr.2008.328.

Sergi C, Shen F, Liu SM. Insulin/IGF-1R, SIRT1, and FOXOs pathways—an intriguing interaction platform for bone and osteosarcoma. Front Endocrinol (Lausanne) 10: 93, 2019. doi:10.3389/

fendo.2019.00093.

Mitobe M, Yoshida T, Sugiura H, Shirota S, Tsuchiya K, Nihei H.

Oxidative stress decreases klotho expression in a mouse kidney

cell line. Nephron Exp Nephrol 101: e67–e74, 2005. doi:10.1159/

000086500.

Yoon HE, Ghee JY, Piao SG, Song JH, Han DH, Kim S, Ohashi N,

Kobori H, Kuro-O M, Yang CW. Angiotensin II blockade upregulates

the expression of klotho, the anti-ageing gene, in an experimental

model of chronic cyclosporine nephropathy. Nephrol Dial Transplant

26: 800–813, 2011. doi:10.1093/ndt/gfq537.

Irifuku T, Doi S, Sasaki K, Doi T, Nakashima A, Ueno T, Yamada K,

Arihiro K, Kohno N, Masaki T. Inhibition of H3K9 histone methyltransferase G9a attenuates renal fibrosis and retains klotho expression. Kidney Int 89: 147–157, 2016. doi:10.1038/ki.2015.291.

Morii K, Yamasaki S, Doi S, Irifuku T, Sasaki K, Doi T, Nakashima

A, Arihiro K, Masaki T. Micro RNA-200c regulates KLOTHO expression in human kidney cells under oxidative stress. PLoS One 14:

e0218468, 2019. doi:10.1371/journal.pone.0218468.

Vlassara H, Torreggiani M, Post JB, Zheng F, Uribarri J, Striker GE.

Role of oxidants/inflammation in declining renal function in chronic

kidney disease and normal aging. Kidney Int 76, Suppl 114: S3–S11,

2009. doi:10.1038/ki.2009.401.

Kim JH, Xie J, Hwang KH, Wu YL, Oliver N, Eom M, Park KS,

Barrezueta N, Kong ID, Fracasso RP, Huang C-L, Cha SK. Klotho

AJP-Renal Physiol  doi:10.1152/ajprenal.00609.2020  www.ajprenal.org

Downloaded from journals.physiology.org/journal/ajprenal at Hiroshima Daigaku (133.041.093.090) on November 29, 2021.

KLOTHO AND RENAL AGING

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

may ameliorate proteinuria by targeting TRPC6 channels in podocytes. J Am Soc Nephrol 28: 140–151, 2017. doi:10.1681/

ASN.2015080888.

Kanbay M, Demiray A, Afsar B, Covic A, Tapoi L, Ureche C, Ortiz A.

Role of Klotho in the development of essential hypertension.

Hypertension 77: 740–750, 2021. doi:10.1161/HYPERTENSIONAHA.

120.16635.

Kawarazaki W, Mizuno R, Nishimoto M, Ayuzawa N, Hirohama D,

Ueda K, Kawakami-Mori F, Oba S, Marumo T, Fujita T. Salt causes

aging-associated hypertension via vascular Wnt5a under Klotho

deficiency. J Clin Invest 130: 4152–4166, 2020. doi:10.1172/

JCI134431.

Mizuno M, Mitchell JH, Crawford S, Huang C-L, Maalouf N, Hu MC, Moe OW, Smith SA, Vongpatanasin W. High dietary phosphate

intake induces hypertension and augments exercise pressor reflex

function in rats. Am J Physiol Regul Integr Comp Physiol 311: R39–

R48, 2016. doi:10.1152/ajpregu.00124.2016.

Villa-Etchegoyen C, Lombarte M, Matamoros N, Belizán JM,

Cormick G. Mechanisms involved in the relationship between low

calcium intake and high blood pressure. Nutrients 11: 1112, 2019.

doi:10.3390/nu11051112.

Wright JR, Duggal A, Thomas R, Reeve R, Roberts ISD, Kalra PA.

Clinicopathological correlation in biopsy-proven atherosclerotic nephropathy: implications for renal functional outcome in atherosclerotic renovascular disease. Nephrol Dial Transplant 16: 765–770,

2001. doi:10.1093/ndt/16.4.765.

Liu Y. Renal fibrosis: new insights into the pathogenesis and therapeutics. Kidney Int 69: 213–217, 2006. doi:10.1038/sj.ki.5000054.

Meng XM, Tang PMK, Li J, Lan HY. TGF-b/Smad signaling in renal fibrosis. Front Physiol 6: 82, 2015. doi:10.3389/fphys.2015.00082.

Schnaper HW, Hayashida T, Poncelet AC. It's a Smad world: regulation of TGF-beta signaling in the kidney. J Am Soc Nephrol 13: 1126–

1128, 2002. doi:10.1681/ASN.V1341126.

 J. Mechanisms of TGF-beta signaling from cell

Shi Y, Massague

membrane to the nucleus. Cell 113: 685–700, 2003. doi:10.1016/

s0092-8674(03)00432-x.

Soji K, Doi S, Nakashima A, Sasaki K, Doi T, Masaki T.

Deubiquitinase inhibitor PR-619 reduces Smad4 expression and suppresses renal fibrosis in mice with unilateral ureteral obstruction.

PLoS One 13: e0202409, 2018. doi:10.1371/journal.pone.0202409.

Zhou J, Liu S, Guo L, Wang R, Chen J, Shen J. NMDA receptormediated CaMKII/ERK activation contributes to renal fibrosis. BMC

Nephrol 21: 392, 2020. doi:10.1186/s12882-020-02050-x.

Ma FY, Flanc RS, Tesch GH, Han Y, Atkins RC, Bennett BL,

Friedman GC, Fan JH, Nikolic-Paterson DJ. A pathogenic role for cJun amino-terminal kinase signaling in renal fibrosis and tubular cell

apoptosis. J Am Soc Nephrol 18: 472–484, 2007. doi:10.1681/ASN.

2006060604.

Lee J, An JN, Hwang JH, Lee H, Lee JP, Kim SG. p38 MAPK activity

is associated with the histological degree of interstitial fibrosis in IgA

nephropathy patients. PLoS One 14: e0213981, 2019. doi:10.1371/

journal.pone.0213981.

Kattla JJ, Carew RM, Heljic M, Godson C, Brazil DK. Protein kinase

B/Akt activity is involved in renal TGF-b1-driven epithelial-mesenchymal transition in vitro and in vivo. Am J Physiol Renal Physiol 295:

F215–F225, 2008. doi:10.1152/ajprenal.00548.2007.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

Katz M, Amit I, Yarden Y. Regulation of MAPKs by growth factors

and receptor tyrosine kinases. Biochim Biophys Acta 1773: 1161–1176,

2007. doi:10.1016/j.bbamcr.2007.01.002.

Manning BD, Cantley LC. AKT/PKB signaling: navigating downstream. Cell 129: 1261–1274, 2007. doi:10.1016/j.cell.2007.06.009.

Shimoda H, Doi S, Nakashima A, Sasaki K, Doi T, Masaki T.

Inhibition of the H3K4 methyltransferase MLL1/WDR5 complex

attenuates renal senescence in ischemia reperfusion mice by

reduction of p16INK4a. Kidney Int 96: 1162–1175, 2019. doi:10.1016/j.

kint.2019.06.021.

Wrzesinski SH, Wan YY, Flavell RA. Transforming growth factor-b

and the immune response: implications for anticancer therapy. Clin

Cancer Res 13: 5262–5270, 2007. doi:10.1158/1078-0432.CCR-071157.

Jang HS, Han SJ, Kim JI, Lee S, Lipschutz JH, Park KM.

Activation of ERK accelerates repair of renal tubular epithelial

cells, whereas it inhibits progression of fibrosis following ischemia/reperfusion injury. Biochim Biophys Acta 1832: 1998–2008,

2013. doi:10.1016/j.bbadis.2013.07.001.

Lin AW, Barradas M, Stone JC, Aelst L, Serrano M, Lowe SW.

Premature senescence involving p53 and p16 is activated in

response to constitutive MEK/MAPK mitogenic signaling. Genes Dev

12: 3008–3019, 1998. doi:10.1101/gad.12.19.3008.

Arbel-Goren R, Levy Y, Ronen D, Zick Y. Cyclin-dependent kinase

inhibitors and JNK act as molecular switches, regulating the choice

between growth arrest and apoptosis induced by galectin-8. J Biol

Chem 280: 19105–19114, 2005. doi:10.1074/jbc.M502060200.

Iwasa H, Han J, Ishikawa F. Mitogen-activated protein kinase p38

defines the common senescence-signalling pathway. Genes Cells 8:

131–144, 2003. doi:10.1046/j.1365-2443.2003.00620.x.

Chibaya L, Karim B, Zhang H, Jones SN. Mdm2 phosphorylation by

Akt regulates the p53 response to oxidative stress to promote cell

proliferation and tumorigenesis. Proc Natl Acad Sci USA 118:

e2003193118, 2021. doi:10.1073/pnas.2003193118.

Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D,

Gargiulo G, Testa G, Cacciatore F, Bonaduce D, Abete P. Oxidative

stress, aging, and diseases. Clin Interv Aging 13: 757–772, 2018.

doi:10.2147/CIA.S158513.

Xing L, Guo H, Meng S, Zhu B, Fang J, Huang J, Chen J, Wang Y,

Wang L, Yao X, Wang H. Klotho ameliorates diabetic nephropathy

by activating Nrf2 signaling pathway in podocytes. Biochem Biophys

Res Commun 534: 450–456, 2021. doi:10.1016/j.bbrc.2020.11.061.

Yamamoto M, Clark JD, Pastor JV, Gurnani P, Nandi A, Kurosu

H, Miyoshi M, Ogawa Y, Castrillon DH, Rosenblatt KP, Kuro-O

M. Regulation of oxidative stress by the anti-aging hormone

Klotho. J Biol Chem 280: 38029–38034, 2005. doi:10.1074/jbc.

M509039200.

Jiang F, Liu GS, Dusting GJ, Chan EC. NADPH oxidase-dependent

redox signaling in TGF-b-mediated fibrotic responses. Redox Biol 2:

267–272, 2014. doi:10.1016/j.redox.2014.01.012.

Gaitanaki C, Konstantina S, Chrysa S, Beis I. Oxidative stress stimulates multiple MAPK signalling pathways and phosphorylation of the

small HSP27 in the perfused amphibian heart. J Exp Biol 206: 2759–

2769, 2003. doi:10.1242/jeb.00483.

loën A, Even

Holzenberger M, Dupont J, Ducos B, Leneuve P, Ge

PC, Cervera P, Bouc YL. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 421: 182–187, 2003.

doi:10.1038/nature01298.

AJP-Renal Physiol  doi:10.1152/ajprenal.00609.2020  www.ajprenal.org

Downloaded from journals.physiology.org/journal/ajprenal at Hiroshima Daigaku (133.041.093.090) on November 29, 2021.

F811

...

参考文献をもっと見る