リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Functional properties of fermented rice bran and vitamin K on age-related diseases using animal models」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Functional properties of fermented rice bran and vitamin K on age-related diseases using animal models

TUBAGUS BAHTIAR RUSBANA 東北大学

2020.12.10

概要

The ageing process is commonly defined as the accumulation of diverse deleterious changes occurring in cells and tissues with advancing age. These deteriorations process leads to a gradual decrease in physiological organs, an increased risk of many diseases, and a general decline in the capacity of the individual. This process is often severed by non-communicable diseases (NCDs) such as diabetes mellitus.

 Locomotive syndrome and cognitive impairment are the main risks of ageing which could be accelerated by diabetes mellitus. The combination of ageing and NCDs leads to impaired functions and increased vulnerability to morbidity and mortality which bring a huge economic burden to society. The efforts to deal with the effects of ageing is an important strategy considering that the world is currently experiencing demographic problems.

 There are some interventions and research for facing up the aging which is lied based on the theory of aging. The free radical, immunologic, inflammation, mitochondrial, and neuroendocrine theory are all theories of the aging pathway, providing useful and important insights for understanding the physiological changes and for guidance on how the treatment that could be searched and could be done.

 Recent findings show that vitamin K (VK) status and rice bran supplementation influenced the health and ageing process. The high abundance of VK in the normal brain and negative correlation between ageing and VK status on cognitive impairment in elder people became the background of this study.

 Fermented rice bran (FRB) as the rich functional ingredient sources, both its fraction and single compound extract, in several studies showed beneficial function for improving the metabolic syndrome, diabetes mellitus, and other lifestyle diseases by its anti-inflammation and anti-oxidative effect.

 Using two models of animal, VK and FRB are expected to exhibit the nutraceuticals effect on amelioration of ageing process. Streptozotocin-induced diabetic rat which is used in this study provides the muscle atrophy condition as a sarcopenia model. FRB with its functional compounds is expected to give the improvement on muscle atrophy during diabetic complications. Senescence accelerated mouse prone 8 (SAMP8) is the mouse model for cognitive impairment which has behavioral alterations as young as 4 months old is expected to show the influence of VK concentration on the diet to cognitive impairment. We will not be able to abolish ageing, but we do expect to be able to attenuate the process and greatly ameliorate its effects (Partridge et al., 2018).

この論文で使われている画像

参考文献

Akiguchi, I., Pallàs, M., Budka, H., Akiyama, H., Ueno, M., Han, J., Yagi, H., Nishikawa, T., Chiba, Y., Sugiyama, H., Takahashi, R., Unno, K., Higuchi, K., Hosokawa, M., 2017. SAMP8 mice as a neuropathological model of accelerated brain aging and dementia: Toshio Takeda’s legacy and future directions. Neuropathology 37, 293–305. https://doi.org/10.1111/neup.12373

Alauddin, M., Shirakawa, H., Koseki, T., Kijima, N., Ardiansyah, Budijanto, S., Islam, J., Goto, T., Komai, M., 2016. Fermented rice bran supplementation mitigates metabolic syndrome in stroke-prone spontaneously hypertensive rats. BMC Complement. Altern. Med. 16, 442. https://doi.org/10.1186/s12906-016-1427-z

Alisi, L., Cao, R., De Angelis, C., Cafolla, A., Caramia, F., Cartocci, G., Librando, A., Fiorelli, M., 2019. The Relationships Between Vitamin K and Cognition: A Review of Current Evidence. Front. Neurol. 10. https://doi.org/10.3389/fneur.2019.00239

Amidfar, M., de Oliveira, J., Kucharska, E., Budni, J., Kim, Y.-K., 2020. The role of CREB and BDNF in neurobiology and treatment of Alzheimer’s disease. Life Sci. 257, 118020. https://doi.org/10.1016/j.lfs.2020.118020

Ardiansyah, David, W., Handoko, D.D., Kusbiantoro, B., Budijanto, S., Shirakawa, H., 2019. Fermented rice bran extract improves blood pressure and glucose in stroke-prone spontaneously hypertensive rats. Nutr. Food Sci. 49, 844– 853. https://doi.org/10.1108/NFS-12-2018-0340

Beaudart, C., Rizzoli, R., Bruyère, O., Reginster, J.-Y., Biver, E., 2014. Sarcopenia: burden and challenges for public health. Arch. Public Health Arch. Belg. Sante Publique 72, 45. https://doi.org/10.1186/2049-3258-72-45

Bektas, A., Schurman, S.H., Sen, R., Ferrucci, L., 2018. Aging, inflammation and the environment. Exp. Gerontol. 105, 10–18. https://doi.org/10.1016/j.exger.2017.12.015

Bodine, S.C., Baehr, L.M., 2014. Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1. Am. J. Physiol. Endocrinol. Metab. 307, E469-484. https://doi.org/10.1152/ajpendo.00204.2014

Bonaldo, P., Sandri, M., 2013. Cellular and molecular mechanisms of muscle atrophy. Dis. Model. Mech. 6, 25–39. https://doi.org/10.1242/dmm.010389

Booth, S.L., 2012. Vitamin K: food composition and dietary intakes. Food Nutr. Res. 56. https://doi.org/10.3402/fnr.v56i0.5505

Carrié, I., Bélanger, E., Portoukalian, J., Rochford, J., Ferland, G., 2011. Lifelong low-phylloquinone intake is associated with cognitive impairments in old rats. J. Nutr. 141, 1495–1501. https://doi.org/10.3945/jn.110.137638

Carrié, I., Portoukalian, J., Vicaretti, R., Rochford, J., Potvin, S., Ferland, G., 2004. Menaquinone-4 Concentration Is Correlated with Sphingolipid Concentrations in Rat Brain. J. Nutr. 134, 167–172. https://doi.org/10.1093/jn/134.1.167

Chang, A.Y., Skirbekk, V.F., Tyrovolas, S., Kassebaum, N.J., Dieleman, J.L., 2019. Measuring population ageing: an analysis of the Global Burden of Disease Study 2017. Lancet Public Health 4, e159–e167. https://doi.org/10.1016/S2468-2667(19)30019-2

Cheng, X., Zhou, W., Zhang, Y., 2014. The behavioral, pathological and therapeutic features of the senescence-accelerated mouse prone 8 strain as an Alzheimer’s disease animal model. Ageing Res. Rev. 13, 13–37. https://doi.org/10.1016/j.arr.2013.10.002

Chou, L.-Y., Chao, Y.-M., Peng, Y.-C., Lin, H.-C., Wu, Y.-L., 2020. Glucosamine Enhancement of BDNF Expression and Animal Cognitive Function. Molecules 25, 3667. https://doi.org/10.3390/molecules25163667

Chouet, J., Ferland, G., Féart, C., Rolland, Y., Presse, N., Boucher, K., Barberger- Gateau, P., Beauchet, O., Annweiler, C., 2015. Dietary Vitamin K Intake Is Associated with Cognition and Behaviour among Geriatric Patients: The CLIP Study. Nutrients 7, 6739–6750. https://doi.org/10.3390/nu7085306

Cunha, 2010. A simple role for BDNF in learning and memory? Front. Mol. Neurosci. https://doi.org/10.3389/neuro.02.001.2010

de D. Beas-Jiménez, J., López-Lluch, G., Sánchez-Martínez, I., Muro-Jiménez, A., Rodríguez-Bies, E., Navas, P., 2011. Sarcopenia, implications of physical exercise in its pathophysiology. prevention and treatment. Rev. Andal. Med. Deporte 4, 158–166.

Eley, H.L., Tisdale, M.J., 2007. Skeletal Muscle Atrophy, a Link between Depression of Protein Synthesis and Increase in Degradation. J. Biol. Chem. 282, 7087–7097. https://doi.org/10.1074/jbc.M610378200

Erickson, K.I., Prakash, R.S., Voss, M.W., Chaddock, L., Heo, S., McLaren, M., Pence, B.D., Martin, S.A., Vieira, V.J., Woods, J.A., McAuley, E., Kramer, A.F., 2010. Brain-Derived Neurotrophic Factor Is Associated with Age- Related Decline in Hippocampal Volume. J. Neurosci. 30, 5368–5375. https://doi.org/10.1523/JNEUROSCI.6251-09.2010

Faulkner, J.A., Larkin, L.M., Claflin, D.R., Brooks, S.V., 2007. Age-Related Changes in the Structure and Function of Skeletal Muscles. Clin. Exp. Pharmacol. Physiol. 34, 1091–1096. https://doi.org/10.1111/j.1440- 1681.2007.04752.x

Ferland, G., 2012. Vitamin K, an emerging nutrient in brain function. BioFactors 38, 151–157. https://doi.org/10.1002/biof.1004

Ferland, G., Doucet, I., Mainville, D., 2016. Phylloquinone and Menaquinone-4 Tissue Distribution at Different Life Stages in Male and Female Sprague– Dawley Rats Fed Different VK Levels Since Weaning or Subjected to a 40% Calorie Restriction since Adulthood. Nutrients 8, 141. https://doi.org/10.3390/nu8030141

Ferrucci, L., Fabbri, E., 2018. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 15, 505–522. https://doi.org/10.1038/s41569-018-0064-2

Fortes, M.A.S., Marzuca-Nassr, G.N., Vitzel, K.F., da Justa Pinheiro, C.H., Newsholme, P., Curi, R., 2016. Housekeeping proteins: How useful are they in skeletal muscle diabetes studies and muscle hypertrophy models? Anal. Biochem. 504, 38–40. https://doi.org/10.1016/j.ab.2016.03.023

Gomes, M.D., Lecker, S.H., Jagoe, R.T., Navon, A., Goldberg, A.L., 2001. Atrogin- 1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc. Natl. Acad. Sci. 98, 14440–14445. https://doi.org/10.1073/pnas.251541198

Han, R., Liu, Z., Sun, N., Liu, S., Li, L., Shen, Y., Xiu, J., Xu, Q., 2019. BDNF Alleviates Neuroinflammation in the Hippocampus of Type 1 Diabetic Mice via Blocking the Aberrant HMGB1/RAGE/NF-κB Pathway. Aging Dis. 10, 611. https://doi.org/10.14336/AD.2018.0707

Harshman, S.G., Fu, X., Karl, J.P., Barger, K., Lamon-Fava, S., Kuliopulos, A., Greenberg, A.S., Smith, D., Shen, X., Booth, S.L., 2016. Tissue Concentrations of Vitamin K and Expression of Key Enzymes of Vitamin K Metabolism Are Influenced by Sex and Diet but Not Housing in C57Bl6 Mice123. J. Nutr. 146, 1521–1527. https://doi.org/10.3945/jn.116.233130

Hirata, Y., Nomura, K., Senga, Y., Okada, Y., Kobayashi, K., Okamoto, S., Minokoshi, Y., Imamura, M., Takeda, S., Hosooka, T., Ogawa, W., 2019. Hyperglycemia induces skeletal muscle atrophy via a WWP1/KLF15 axis. JCI Insight 4. https://doi.org/10.1172/jci.insight.124952

Huang, W., Cao, J., Liu, X., Meng, F., Li, M., Chen, B., Zhang, J., 2015. AMPK Plays a Dual Role in Regulation of CREB/BDNF Pathway in Mouse Primary Hippocampal Cells. J Mol Neurosci 7.

Islam, J., Koseki, T., Watanabe, K., Ardiansyah, Budijanto, S., Oikawa, A., Alauddin, M., Goto, T., Aso, H., Komai, M., Shirakawa, H., 2017. Dietary Supplementation of Fermented Rice Bran Effectively Alleviates Dextran Sodium Sulfate-Induced Colitis in Mice. Nutrients 9, 747. https://doi.org/10.3390/nu9070747

Islam, M.S., Nagasaka, R., Ohara, K., Hosoya, T., Ozaki, H., Ushio, H., Hori, M., 2011. Biological abilities of rice bran-derived antioxidant phytochemicals for medical therapy. Curr. Top. Med. Chem. 11, 1847–1853. https://doi.org/10.2174/156802611796235099

Ito, A., Shirakawa, H., Takumi, N., Minegishi, Y., Ohashi, A., Howlader, Z.H., Ohsaki, Y., Sato, T., Goto, T., Komai, M., 2011. Menaquinone-4 enhances testosterone production in rats and testis-derived tumor cells. Lipids Health Dis. 10, 158. https://doi.org/10.1186/1476-511X-10-158

Jung, W.R., Kim, H.G., Kim, K.L., 2008. Ganglioside GQ1b improves spatial learning and memory of rats as measured by the Y-maze and the Morris water maze tests. Neurosci. Lett. 439, 220–225. https://doi.org/10.1016/j.neulet.2008.05.020

Kiely, A., Ferland, G., Ouliass, B., O’Toole, P.W., Purtill, H., O’Connor, E.M., 2020. Vitamin K status and inflammation are associated with cognition in older Irish adults. Nutr. Neurosci. 23, 591–599. https://doi.org/10.1080/1028415X.2018.1536411

Komai, M., Shirakawa, H., 2007. [Vitamin K metabolism. Menaquinone-4 (MK-4) formation from ingested VK analogues and its potent relation to bone function]. Clin. Calcium 17, 1663–1672. https://doi.org/CliCa071116631672

Kuang, X., Liu, C., Guo, X., Li, K., Deng, Q., Li, D., 2020. The combination effect of vitamin K and vitamin D on human bone quality: a meta-analysis of randomized controlled trials. Food Funct. https://doi.org/10.1039/C9FO03063H

Magne, H., Savary-Auzeloux, I., Rémond, D., Dardevet, D., 2013. Nutritional strategies to counteract muscle atrophy caused by disuse and to improve recovery. Nutr. Res. Rev. 26, 149–165. https://doi.org/10.1017/S0954422413000115

Matsumoto, H., Hagino, H., Wada, T., Kobayashi, E., 2016. Locomotive syndrome presents a risk for falls and fractures in the elderly Japanese population. Osteoporos. Sarcopenia 2, 156–163. https://doi.org/10.1016/j.afos.2016.06.001

Meng, S.-J., Yu, L.-J., 2010. Oxidative Stress, Molecular Inflammation and Sarcopenia. Int. J. Mol. Sci. 11, 1509–1526. https://doi.org/10.3390/ijms11041509

Mészáros, Á., Molnár, K., Nógrádi, B., Hernádi, Z., Nyúl-Tóth, Á., Wilhelm, I., Krizbai, I.A., 2020. Neurovascular Inflammaging in Health and Disease. Cells 9, 1614. https://doi.org/10.3390/cells9071614

Miyamoto, M., Kiyota, Y., Yamazaki, N., Nagaoka, A., Matsuo, T., Nagawa, Y., Takeda, T., 1986. Age-related changes in learning and memory in the senescence-accelerated mouse (SAM). Physiol. Behav. 38, 399–406. https://doi.org/10.1016/0031-9384(86)90112-5

Moylan, J.S., Reid, M.B., 2007. Oxidative stress, chronic disease, and muscle wasting. Muscle Nerve 35, 411–429. https://doi.org/10.1002/mus.20743

Nakagawa, K., Hirota, Y., Sawada, N., Yuge, N., Watanabe, M., Uchino, Y., Okuda, N., Shimomura, Y., Suhara, Y., Okano, T., 2010. Identification of UBIAD1 as a novel human menaquinone-4 biosynthetic enzyme. Nature 468, 117–121. https://doi.org/10.1038/nature09464

Oguntibeju, O.O., 2019. Type 2 diabetes mellitus, oxidative stress and inflammation: examining the links. Int. J. Physiol. Pathophysiol. Pharmacol. 11, 45–63.

Ohsaki, Y., Shirakawa, H., Hiwatashi, K., Furukawa, Y., Mizutani, T., Komai, M., 2006. Vitamin K Suppresses Lipopolysaccharide-Induced Inflammation in the Rat. Biosci. Biotechnol. Biochem. 70, 926–932. https://doi.org/10.1271/bbb.70.926

Ohsaki, Y., Shirakawa, H., Miura, A., Giriwono, P.E., Sato, S., Ohashi, A., Iribe, M., Goto, T., Komai, M., 2010. Vitamin K suppresses the lipopolysaccharide-induced expression of inflammatory cytokines in cultured macrophage-like cells via the inhibition of the activation of nuclear factor κB through the repression of IKKα/β phosphorylation. J. Nutr. Biochem. 21, 1120–1126. https://doi.org/10.1016/j.jnutbio.2009.09.011

O’Neill, B.T., Bhardwaj, G., Penniman, C.M., Krumpoch, M.T., Beltran, P.A.S.,

Klaus, K., Poro, K., Li, M., Pan, H., Dreyfuss, J.M., Nair, K.S., Kahn, C.R., 2019. FoxO Transcription Factors Are Critical Regulators of Diabetes- Related Muscle Atrophy. Diabetes 68, 556–570. https://doi.org/10.2337/db18-0416

Ono, T., Takada, S., Kinugawa, S., Tsutsui, H., 2015. Curcumin ameliorates skeletal muscle atrophy in type 1 diabetic mice by inhibiting protein ubiquitination. Exp. Physiol. 100, 1052–1063. https://doi.org/10.1113/EP085049

Ota, H., Akishita, M., Akiyoshi, T., Kahyo, T., Setou, M., Ogawa, S., Iijima, K., Eto, M., Ouchi, Y., 2012. Testosterone Deficiency Accelerates Neuronal and Vascular Aging of SAMP8 Mice: Protective Role of eNOS and SIRT1. PLOS ONE 7, e29598. https://doi.org/10.1371/journal.pone.0029598

Pacifico, J., Geerlings, M.A.J., Reijnierse, E.M., Phassouliotis, C., Lim, W.K., Maier, A.B., 2020. Prevalence of sarcopenia as a comorbid disease: A systematic review and meta-analysis. Exp. Gerontol. 131, 110801. https://doi.org/10.1016/j.exger.2019.110801

Palasz, E., Wysocka, A., Gasiorowska, A., Chalimoniuk, M., Niewiadomski, W., Niewiadomska, G., 2020. BDNF as a Promising Therapeutic Agent in Parkinson’s Disease. Int. J. Mol. Sci. 21, 1170. https://doi.org/10.3390/ijms21031170

Partridge, L., Deelen, J., Slagboom, P.E., 2018. Facing up to the global challenges of ageing. Nature 561, 45–56. https://doi.org/10.1038/s41586-018-0457-8

Perez-Ternero, C., Bermudez Pulgarin, B., Alvarez de Sotomayor, M., Herrera, M.D., 2016. Atherosclerosis-related inflammation and oxidative stress are improved by rice bran enzymatic extract. J. Funct. Foods 26, 610–621. https://doi.org/10.1016/j.jff.2016.08.037

Perez-Ternero, C., Werner, C.M., Nickel, A.G., Herrera, M.D., Motilva, M.-J., Böhm, M., Alvarez de Sotomayor, M., Laufs, U., 2017. Ferulic acid, a bioactive component of rice bran, improves oxidative stress and mitochondrial biogenesis and dynamics in mice and in human mononuclear cells. J. Nutr. Biochem. 48, 51–61. https://doi.org/10.1016/j.jnutbio.2017.06.011

Presse, N., Belleville, S., Gaudreau, P., Greenwood, C.E., Kergoat, M.-J., Morais, J.A., Payette, H., Shatenstein, B., Ferland, G., 2013a. Vitamin K status and cognitive function in healthy older adults. Neurobiol. Aging 34, 2777–2783. https://doi.org/10.1016/j.neurobiolaging.2013.05.031

Presse, N., Belleville, S., Gaudreau, P., Greenwood, C.E., Kergoat, M.-J., Morais, J.A., Payette, H., Shatenstein, B., Ferland, G., 2013b. Vitamin K status and cognitive function in healthy older adults. Neurobiol. Aging 34, 2777–2783. https://doi.org/10.1016/j.neurobiolaging.2013.05.031

Reeves, P.G., Nielsen, F.H., Fahey, G.C., 1993. AIN-93 Purified Diets for Laboratory Rodents: Final Report of the American Institute of Nutrition Ad Hoc Writing Committee on the Reformulation of the AIN-76A Rodent Diet. J. Nutr. 123, 1939–1951. https://doi.org/10.1093/jn/123.11.1939

Roy, B., 2013. Biomolecular basis of the role of diabetes mellitus in osteoporosis and bone fractures. World J. Diabetes 4, 101–113. https://doi.org/10.4239/wjd.v4.i4.101

Rusbana, T.B., Agista, A.Z., Saputra, W.D., Ohsaki, Y., Watanabe, K., Ardiansyah, A., Budijanto, S., Koseki, T., Aso, H., Komai, M., Shirakawa, H., 2020. Supplementation with Fermented Rice Bran Attenuates Muscle Atrophy in a Diabetic Rat Model 14.

Sandri, M., 2013. Protein breakdown in muscle wasting: Role of autophagy- lysosome and ubiquitin-proteasome. Int. J. Biochem. Cell Biol., Molecular Basis of Muscle Wasting 45, 2121–2129. https://doi.org/10.1016/j.biocel.2013.04.023

Saputra, W.D., Aoyama, N., Komai, M., Shirakawa, H., 2019. Menaquinone-4 Suppresses Lipopolysaccharide-Induced Inflammation in MG6 Mouse Microglia-Derived Cells by Inhibiting the NF-κB Signaling Pathway. Int. J. Mol. Sci. 20, 2317. https://doi.org/10.3390/ijms20092317

Sartori, A.C., Vance, D.E., Slater, L.Z., Crowe, M., 2012. The Impact of Inflammation on Cognitive Function in Older Adults: Implications for Healthcare Practice and Research. J. Neurosci. Nurs. 44, 206–217. https://doi.org/10.1097/JNN.0b013e3182527690

Sato, T., Inaba, N., Yamashita, T., 2020. MK-7 and Its Effects on Bone Quality and Strength. Nutrients 12, 965. https://doi.org/10.3390/nu12040965

Schreiber, A., Peter, M., 2014. Substrate recognition in selective autophagy and the ubiquitin–proteasome system. Biochim. Biophys. Acta BBA - Mol. Cell Res., Ubiquitin-Proteasome System 1843, 163–181. https://doi.org/10.1016/j.bbamcr.2013.03.019

Schurgers, L.J., Dissel, P.E.P., Spronk, H.M.H., Soute, B.A.M., Dhore, C.R., Cleutjens, J.P.M., Vermeer, C., 2001. Role of vitamin K and vitamin K- dependent proteins in vascular calcification. Z. For Kardiologie 90, III57– III63. https://doi.org/10.1007/s003920170043

Schurgers, L.J., Vermeer, C., 2002. Differential lipoprotein transport pathways of K-vitamins in healthy subjects. Biochim. Biophys. Acta BBA - Gen. Subj. 1570, 27–32. https://doi.org/10.1016/S0304-4165(02)00147-2

Schwalfenberg, G.K., 2017. Vitamins K1 and K2: The Emerging Group of Vitamins Required for Human Health. J. Nutr. Metab. 2017, 1–6. https://doi.org/10.1155/2017/6254836

Shaw, S.C., Dennison, E.M., Cooper, C., 2017. Epidemiology of Sarcopenia: Determinants Throughout the Lifecourse. Calcif. Tissue Int. 101, 229–247. https://doi.org/10.1007/s00223-017-0277-0

Shin, M.-K., Choi, M.-S., Chae, H.-J., Kim, J.-W., Kim, H.-G., Kim, K.-L., 2019. Ganglioside GQ1b ameliorates cognitive impairments in an Alzheimer’s disease mouse model and causes reduction of amyloid precursor protein. Sci. Rep. 9, 8512. https://doi.org/10.1038/s41598-019-44739-6

Shin, M.K., Jung, W.R., Kim, H.G., Roh, S.E., Kwak, C.H., Kim, C.H., Kim, S.J., Kim, K.L., 2014. The ganglioside GQ1b regulates BDNF expression via the NMDA receptor signaling pathway. Neuropharmacology 77, 414–421. https://doi.org/10.1016/j.neuropharm.2013.10.022

Shioi, A., Morioka, T., Shoji, T., Emoto, M., 2020. The Inhibitory Roles of Vitamin K in Progression of Vascular Calcification. Nutrients 12. https://doi.org/10.3390/nu12020583

Shirakawa, H., Katsurai, T., Komai, M., 2014. Conversion of Menaquinone-4 in Animal Organs and its Functions. Oleoscience 14, 547–553. https://doi.org/10.5650/oleoscience.14.547

Siqueira, M.F., Li, J., Chehab, L., Desta, T., Chino, T., Krothpali, N., Behl, Y., Alikhani, M., Yang, J., Braasch, C., Graves, D.T., 2010. Impaired wound healing in mouse models of diabetes is mediated by TNF-α dysregulation and associated with enhanced activation of forkhead box O1 (FOXO1). Diabetologia 53, 378–388. https://doi.org/10.1007/s00125-009-1529-y

Tamadon-Nejad, S., Ouliass, B., Rochford, J., Ferland, G., 2018. Vitamin K Deficiency Induced by Warfarin Is Associated With Cognitive and Behavioral Perturbations, and Alterations in Brain Sphingolipids in Rats. Front. Aging Neurosci. 10, 213. https://doi.org/10.3389/fnagi.2018.00213

Tanemura, K., Igarashi, K., Matsugami, T.-R., Aisaki, K., Kitajima, S., Kanno, J., 2009. Intrauterine environment-genome interaction and children’s development (2): Brain structure impairment and behavioral disturbance induced in male mice offspring by a single intraperitoneal administration of domoic acid (DA) to their dams. J. Toxicol. Sci. 34 Suppl 2, SP279-286. https://doi.org/10.2131/jts.34.sp279

Tha, K.K., Okuma, Y., Miyazaki, H., Murayama, T., Uehara, T., Hatakeyama, R., Hayashi, Y., Nomura, Y., 2000. Changes in expressions of proinflammatory cytokines IL-1β, TNF-α and IL-6 in the brain of senescence accelerated mouse (SAM) P8. Brain Res. 885, 25–31. https://doi.org/10.1016/S0006- 8993(00)02883-3

Thijssen, H.H.W., Drittij-Reijnders, M.J., 1994. Vitamin K distribution in rat tissues: dietary phylloquinone is a source of tissue menaquinone-4. Br. J. Nutr. 72, 415–425. https://doi.org/10.1079/BJN19940043

Tosato, M., Zamboni, V., Ferrini, A., Cesari, M., 2007. The aging process and potential interventions to extend life expectancy. Clin. Interv. Aging 2, 401– 412.

Trevisan, K., Cristina-Pereira, R., Silva-Amaral, D., Aversi-Ferreira, T.A., 2019. Theories of Aging and the Prevalence of Alzheimer’s Disease [WWW Document]. BioMed Res. Int. https://doi.org/10.1155/2019/9171424

Tsukamoto, Y., Ichise, H., Yamaguchi, M., 2000. Prolonged Intake of Dietary Fermented Soybeans (Natto) with the Reinforced Vitamin K<SUB>2</SUB> (Menaquinone-7) Enhances Circulating γ- Carboxylated Osteocalcin Concentration in Normal Individuals. J. Health Sci. 46, 317–321. https://doi.org/10.1248/jhs.46.317

United Nations, Department of Economic and Social Affairs, Population Division, 2017. World population ageing, 2017 highlights.

Wang, C., Guo, J., Guo, R., 2017. Effect of XingPiJieYu decoction on spatial learning and memory and cAMP-PKA-CREB-BDNF pathway in rat model of depression through chronic unpredictable stress. BMC Complement. Altern. Med. 17, 73. https://doi.org/10.1186/s12906-016-1543-9

Wang, X., Puerta, E., Cedazo-Minguez, A., Hjorth, E., Schultzberg, M., 2015. Insufficient Resolution Response in the Hippocampus of a Senescence- Accelerated Mouse Model — SAMP8. J. Mol. Neurosci. 55, 396–405. https://doi.org/10.1007/s12031-014-0346-z

Whitehouse, A.S., Tisdale, M.J., 2003. Increased expression of the ubiquitin – proteasome pathway in murine myotubes by proteolysis-inducing factor (PIF) is associated with activation of the transcription factor NF-κB. Br. J. Cancer 89, 1116–1122. https://doi.org/10.1038/sj.bjc.6601132

Wolf, A., Bauer, B., Abner, E.L., Ashkenazy-Frolinger, T., Hartz, A.M.S., 2016. A Comprehensive Behavioral Test Battery to Assess Learning and Memory in 129S6/Tg2576 Mice. PLOS ONE 11, e0147733. https://doi.org/10.1371/journal.pone.0147733

Woo, J., 2017. Designing Fit for Purpose Health and Social Services for Ageing Populations. Int. J. Environ. Res. Public. Health 14, 457. https://doi.org/10.3390/ijerph14050457

Wu, J., Yan, L.-J., 2015. Streptozotocin-induced type 1 diabetes in rodents as a model for studying mitochondrial mechanisms of diabetic β cell glucotoxicity. Diabetes Metab. Syndr. Obes. Targets Ther. 8, 181–188. https://doi.org/10.2147/DMSO.S82272

Wyke, S.M., Russell, S.T., Tisdale, M.J., 2004. Induction of proteasome expression in skeletal muscle is attenuated by inhibitors of NF-κB activation. Br. J. Cancer 91, 1742–1750. https://doi.org/10.1038/sj.bjc.6602165

Xu, W., Zhaolong, L., Chunri, L., Yue, W., Song, Y., Lu, R., 2020. Electroacupuncture with Bushen Jiannao improves cognitive defi- cits in senescence-accelerated mouse prone 8 mice by inhibiting neuroinflammation 40, 8.

Yanai, S., Endo, S., 2016. Early onset of behavioral alterations in senescence- accelerated mouse prone 8 (SAMP8). Behav. Brain Res. 308, 187–195. https://doi.org/10.1016/j.bbr.2016.04.026

You, M., Pan, Y., Liu, Y., Chen, Y., Wu, Y., Si, J., Wang, K., Hu, F., 2019. Royal Jelly Alleviates Cognitive Deficits and β-Amyloid Accumulation in APP/PS1 Mouse Model Via Activation of the cAMP/PKA/CREB/BDNF Pathway and Inhibition of Neuronal Apoptosis. Front. Aging Neurosci. 10. https://doi.org/10.3389/fnagi.2018.00428

Yu, Y., Zhang, J., Wang, J., Sun, B., 2019. The anti-cancer activity and potential clinical application of rice bran extracts and fermentation products. RSC Adv. 9, 18060–18069. https://doi.org/10.1039/C9RA02439E

Zhen, J.-L., Chang, Y.-N., Qu, Z.-Z., Fu, T., Liu, J.-Q., Wang, W.-P., 2016. Luteolin rescues pentylenetetrazole-induced cognitive impairment in epileptic rats by reducing oxidative stress and activating PKA/CREB/BDNF signaling. Epilepsy Behav. 57, 177–184. https://doi.org/10.1016/j.yebeh.2016.02.001

Zhong, Y., Chen, Jing, Li, L., Qin, Y., Wei, Y., Pan, S., Jiang, Y., Chen, Jialin, Xie, Y., 2018a. PKA-CREB-BDNF signaling pathway mediates propofol- induced long-term learning and memory impairment in hippocampus of rats. Brain Res. 1691, 64–74. https://doi.org/10.1016/j.brainres.2018.04.022

Zhong, Y., Chen, Jing, Li, L., Qin, Y., Wei, Y., Pan, S., Jiang, Y., Chen, Jialin, Xie, Y., 2018b. PKA-CREB-BDNF signaling pathway mediates propofol- induced long-term learning and memory impairment in hippocampus of rats. Brain Res. 1691, 64–74. https://doi.org/10.1016/j.brainres.2018.04.022

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る