リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「赤ワイン成分レスベラトロールおよびその2量体の血管内皮細胞に対する保護作用に関する研究」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

赤ワイン成分レスベラトロールおよびその2量体の血管内皮細胞に対する保護作用に関する研究

伍, 哲緯 筑波大学 DOI:10.15068/0002000688

2021.07.26

概要

本論文では、赤ワインに含まれるポリフェノールの一種レスベラトロールおよびその二量体であるε-ビニフェリンとδ-ビニフェリンに着目し、動脈硬化の発症・進展の抑制効果に繋がる血管内皮細胞の保護効果について比較研究を行った。その結果、これら3種の化合物はすべて血管内皮細胞に対して創傷治癒を促進すると共に、酸化ストレスによる細胞死を抑制する能力を示した。さらに、少なくとも創傷治癒効果に関しては、3種の化合物間でその強さと濃度依存性に違いがあることも明らかとなった。

動脈は外膜、中膜、内膜の3層構造をとり、血液に接する内膜は一層の内皮細胞から構成される。肥満、高血糖、高血圧などのメタボリック症候群は、この内皮細胞に酸化ストレス等による障害をもたらし、それが動脈硬化の引き金となる。したがって、傷害を負った内膜を治癒する能力、即ち内皮細胞に増殖能や遊走能を付与できる化合物、あるいは内皮細胞に酸化ストレス抵抗性を付与できる化合物は、動脈硬化の発症・進展を抑制できると考えられる。私が所属する研究室では、過去にレスベラトロールとその二量体ε-ビニフェリンが、内皮細胞の創傷治癒を促進すると同時に、酸化ストレス抵抗性を付与できることを明らかにした。その際、ε-ビニフェリンがレスベラトロールと比較してより低濃度で効果を示し、かつ効力も強いことを明らかにしている。しかし、そのメカニズムの詳細は不明であり、また同じくレスベラトロールの二量体であるδ-ビニフェリンの血管への作用は過去に1報論文があるのみで、内皮細胞に対する創傷治癒や酸化ストレス抵抗性付与に関する報告は存在しない。

本論文では具体的に以下のことを明らかにした。1 ) レスベラトロールは 10 μΜと20 μΜで有意に創傷治癒効果を示したものの、5 μΜでは効果がなかった。これに対し、ε- ビニフェリンとδ- ビニフェリンは5 μ Μでも創傷治癒効果を持ち、3種の化合物の中ではε-ビニフェリンが最も強い効果を示した。2)内皮細胞の創傷治癒は一酸化窒素( N 0 ) の産生に依存することが知られており、3 種の化合物もすべてN 0 産生能を有したが、1 ) の結果を反映するように、その作用はε- ビニフェリンが他の化合物より強かった。また、3種の化合物によるN 0 産生は内皮型N 0 産生酵素( e N O S ) の阻害剤L - N A M E によりほぼ完全に抑制された。これは3種の化合物の創傷治癒効果に、e NOS活性化を介したN 0 産生が不可欠であることを示している。3 ) レスベラトロールは長寿遺伝子SIRT 1 の発現増加やそのタンパク産物の活性化に関わるが、レスベラトロールだけでなく他の2つの化合物もSIRT1の発現増加作用を示した。
また、3 種の化合物はいずれも、抗酸化酵素へムオキシゲナーゼ- 1 ( H 0 - 1 ) のタンパク発現を増加させた。4) 3種の化合物それぞれによる創傷治癒作用は、 SIRT1の阻害剤EX527およびH0-1阻害剤ZnPPIXにより抑制された。これは、これら3 種の化合物による創傷治癒効果にSIRT 1 とH 0 - 1 の両方が必要であることを示唆している。5 ) 内皮細胞を24 時間3 種の化合物それぞれと培養し、その後、化合物を洗浄により除去した後、酸化ストレスとして過酸化水素を添加したところ、過酸化水素による細胞死が有意に抑制された。これは、3種の化合物が内皮細胞に対して酸化ストレス抵抗性を付与できることを意味している。6 ) 3 種の化合物は、抗酸化酵素カタラーゼのタンパク発現を時間依存性は異なるものの、いずれも有意に増加させた。

以上の結果より、赤ワイン成分レスベラトロールおよびその二量体ε-ビニフェリンとδ-ビニフェリンは、動脈硬化の発症・進展の抑制効果に繋がる血管内皮細胞の保護効果、即ち創傷治癒効果と酸化ストレス抵抗性付与効果を示すことが明らかとなった。また、効果の強さと濃度依存性に関しては、化合物間で異なることも示された。赤ワインの成分としてはレスベラトロールの作用が注目されているが、本論文は、二量体の効果も重視する必要があることを示すものである。

この論文で使われている画像

参考文献

1. Quideau S, Deffieux D, Douat-Casassus C, Pouysegu L. Plant polyphenols: chemical properties, biological activities, and synthesis. Angew Chem Int Ed Engl 2011; 50: 586-621.

2. Pandey KB, Rizvi SI. Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev 2009; 2: 270-278.

3. Cueva C, Gil-Sánchez I, Ayuda-Durán B, et al. An Integrated View of the Effects of Wine Polyphenols and Their Relevant Metabolites on Gut and Host Health. Molecules 2017; 22: 99.

4. Li A-N, Li S, Zhang Y-J, Xu X-R, Chen Y-M, Li H-B. Resources and biological activities of natural polyphenols. Nutrients 2014; 6: 6020-6047.

5. Omodanisi E, Aboua Y, Oguntibeju O. Assessment of the Anti-Hyperglycaemic, Anti-Inflammatory and Antioxidant Activities of the Methanol Extract of Moringa Oleifera in Diabetes-Induced Nephrotoxic Male Wistar Rats. Molecules 2017; 22: 439.

6. Nagulapalli Venkata KC, Swaroop A, Bagchi D, Bishayee A. A small plant with big benefits: Fenugreek (Trigonella foenum-graecum Linn.) for disease prevention and health promotion. Mol Nutr Food Res 2017; 61: 1600950.

7. Franceschelli S, Pesce M, Ferrone A, et al. Biological Effect of Licochalcone C on the Regulation of PI3K/Akt/eNOS and NF-kappaB/iNOS/NO Signaling Pathways in H9c2 Cells in Response to LPS Stimulation. Int J Mol Sci 2017; 18: 690.

8. Sajid M, Khan MR, Shah SA, et al. Investigations on anti-inflammatory and analgesic activities of Alnus nitida Spach (Endl). stem bark in Sprague Dawley rats. J Ethnopharmacol 2017; 198: 407-416.

9. Nobile V, Michelotti A, Cestone E, et al. Skin photoprotective and antiageing effects of a combination of rosemary (Rosmarinus officinalis) and grapefruit (Citrus paradisi) polyphenols. Food Nutr Res 2016; 60: 31871.

10. Gamboa-Gomez CI, Gonzalez-Laredo RF, Gallegos-Infante JA, et al. Antioxidant and Angiotensin-Converting Enzyme Inhibitory Activity of Eucalyptus camaldulensis and Litsea glaucescens Infusions Fermented with Kombucha Consortium. Food Technol Biotechnol 2016; 54: 367-374.

11. Zghonda N, Yoshida S, Ezaki S, et al. epsilon-Viniferin is more effective than its monomer resveratrol in improving the functions of vascular endothelial cells and the heart. Biosci Biotechnol Biochem 2012; 76: 954-960.

12. Tenore GC, Caruso D, Buonomo G, et al. A Healthy Balance of Plasma Cholesterol by a Novel Annurca Apple-Based Nutraceutical Formulation: Results of a Randomized Trial. J Med Food 2017; 20: 288-300.

13. Jia M, Ren D, Nie Y, Yang X. Beneficial effects of apple peel polyphenols on vascular endothelial dysfunction and liver injury in high choline-fed mice. Food Funct 2017; 8: 1282-1292.

14. Reboredo-Rodríguez P, Figueiredo-González M, González-Barreiro C, et al. State of the Art on Functional Virgin Olive Oils Enriched with Bioactive Compounds and Their Properties. Int J Mol Sci 2017; 18: 668.

15. Renaud S, de Lorgeril M. Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet (London, England) 1992; 339: 1523-1526.

16. Ulbricht TL, Southgate DA. Coronary heart disease: seven dietary factors. Lancet 1991; 338: 985-992.

17. Ferrières J. The French paradox: lessons for other countries. Heart 2004; 90: 107-111.

18. Wannamethee SG, Shaper AG. Type of alcoholic drink and risk of major coronary heart disease events and all-cause mortality. Am J Public Health 1999; 89: 685-690.

19. Rimm EB, Klatsky A, Grobbee D, Stampfer MJ. Review of moderate alcohol consumption and reduced risk of coronary heart disease: is the effect due to beer, wine, or spirits. BMJ 1996; 312: 731-736.

20. Cordova AC, Sumpio BE. Polyphenols are medicine: Is it time to prescribe red wine for our patients? Int J Angiol 2009; 18: 111-117.

21. Catalgol B, Batirel S, Taga Y, Ozer N. Resveratrol: French Paradox Revisited. Front Pharmacol 2012; 3:141.

22. Jeandet P, Bessis R, Maume B, Sbaghi M. Analysis of resveratrol in Burgundy wines. J Wine Res 1993; 4: 79-85.

23. Reaven GM. Role of Insulin Resistance in Human Disease. Diabetes 1988; 37: 1595.

24. Isomaa B, Almgren P, Tuomi T, et al. Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care 2001; 24: 683-689.

25. Park YW, Zhu S, Palaniappan L, Heshka S, Carnethon MR, Heymsfield SB. The metabolic syndrome: prevalence and associated risk factor findings in the US population from the Third National Health and Nutrition Examination Survey, 1988-1994. Arch Intern Med 2003; 163: 427-436.

26. Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation 2002; 106: 3143-3421.

27. Balkau B, Charles MA, Drivsholm T, et al. Frequency of the WHO metabolic syndrome in European cohorts, and an alternative definition of an insulin resistance syndrome. Diabetes Metab 2002; 28: 364-376.

28. Arai H, Yamamoto A, Matsuzawa Y, et al. Prevalence of metabolic syndrome in the general Japanese population in 2000. J Atheroscler Thromb 2006; 13: 202-208.

29. Alshehri AM. Metabolic syndrome and cardiovascular risk. J Family Community Med 2010; 17: 73-78.

30. Wilson PW, D'Agostino RB, Parise H, Sullivan L, Meigs JB. Metabolic syndrome as a precursor of cardiovascular disease and type 2 diabetes mellitus. Circulation 2005; 112: 3066-3072.

31. Lonardo A, Nascimbeni F, Mantovani A, Targher G. Hypertension, diabetes, atherosclerosis and NASH: Cause or consequence? J Hepatol 2018; 68: 335-352.

32. Pugsley MK, Tabrizchi R. The vascular system: An overview of structure and function. J Pharmacol Toxicol Methods 2000; 44: 333-340.

33. Baselet B, Rombouts C, Benotmane AM, Baatout S, Aerts A. Cardiovascular diseases related to ionizing radiation: The risk of low-dose exposure (Review). Int J Mol Med 2016; 38: 1623-1641.

34. Galkina E, Ley K. Immune and inflammatory mechanisms of atherosclerosis (*). Annu Rev Immunol 2009; 27: 165-197.

35. Heiss C, Rodriguez-Mateos A, Kelm M. Central role of eNOS in the maintenance of endothelial homeostasis. Antioxid Redox Signal 2015; 22: 1230-1242.

36. Kubota T, Kubota N, Kumagai H, et al. Impaired insulin signaling in endothelial cells reduces insulin-induced glucose uptake by skeletal muscle. Cell Metab 2011; 13: 294-307.

37. Siemann EH, Creasy LL. Concentration of the Phytoalexin Resveratrol in Wine. 1992; 43: 49-52.

38. Pezet R, Gindro K, Viret O, Richter H. Effects of resveratrol, viniferins and pterostilbene on Plasmopara viticola zoospore mobility and disease development. Vitis 2004; 43. 145-148.

39. Cantos E, Espin JC, Tomas-Barberan FA. Postharvest induction modeling method using UV irradiation pulses for obtaining resveratrol-enriched table grapes: a new "functional" fruit? J Agric Food Chem 2001; 49: 5052-5058.

40. Lambert C, Richard T, Renouf E, et al. Comparative analyses of stilbenoids in canes of major Vitis vinifera L. cultivars. J Agric Food Chem 2013; 61: 11392-11399.

41. Spanier G, Xu H, Xia N, et al. Resveratrol reduces endothelial oxidative stress by modulating the gene expression of superoxide dismutase 1 (SOD1), glutathione peroxidase 1 (GPx1) and NADPH oxidase subunit (Nox4). J Physiol Pharmacol 2009; 60 Suppl 4: 111-116.

42. Liu Y, Liu G. Isorhapontigenin and resveratrol suppress oxLDL-induced proliferation and activation of ERK1/2 mitogen-activated protein kinases of bovine aortic smooth muscle cells. Biochem Pharmacol 2004; 67: 777-785.

43. Wallerath T, Deckert G, Ternes T, et al. Resveratrol, a polyphenolic phytoalexin present in red wine, enhances expression and activity of endothelial nitric oxide synthase. Circulation 2002; 106: 1652-1658.

44. Wood JG, Rogina B, Lavu S, et al. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 2004; 430: 686-689.

45. Baur JA, Pearson KJ, Price NL, et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 2006; 444: 337-342.

46. Zhang QJ, Wang Z, Chen HZ, et al. Endothelium-specific overexpression of class III deacetylase SIRT1 decreases atherosclerosis in apolipoprotein E-deficient mice. Cardiovasc. Res 2008; 80: 191-199.

47. Ota H, Eto M, Kano MR, et al. Induction of endothelial nitric oxide synthase, SIRT1, and catalase by statins inhibits endothelial senescence through the Akt pathway. Arterioscler Thromb Vasc Biol 2010; 30: 2205-2211.

48. Zhang W, Huang Q, Zeng Z, Wu J, Zhang Y, Chen Z. Sirt1 Inhibits Oxidative Stress in Vascular Endothelial Cells. Oxid Med Cell Longev 2017; 2017: 7543973.

49. Stein S, Matter CM. Protective roles of SIRT1 in atherosclerosis. Cell Cycle 2011; 10: 640-647.

50. Stein S, Schafer N, Breitenstein A, et al. SIRT1 reduces endothelial activation without affecting vascular function in ApoE-/- mice. Aging 2010; 2: 353-630.

51. Kim I, Moon SO, Kim SH, Kim HJ, Koh YS, Koh GY. Vascular endothelial growth factor expression of intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and E-selectin through nuclear factor-kappa B activation in endothelial cells. J Biol Chem 2001; 276: 7614-7620.

52. Langcake P, Pryce RJ. A new class of phytoalexins from grapevines. Experientia 1977; 33: 151-152.

53. Langcake P, Pryce RJ. Oxidative dimerisation of 4-hydroxystilbenes in vitro: production of a grapevine phytoalexin mimic. J Chem Soc, Chem Commun 1977; 7: 208-210.

54. Vitrac X, Bornet A, Vanderlinde R, et al. Determination of stilbenes (delta-viniferin, trans-astringin, trans-piceid, cis- and trans-resveratrol, epsilon-viniferin) in Brazilian wines. J Agric Food Chem 2005; 53: 5664-5669.

55. Wilkens A, Paulsen J, Wray V, Winterhalter P. Structures of two novel trimeric stilbenes obtained by horseradish peroxidase catalyzed biotransformation of trans-resveratrol and (-)-epsilon-viniferin. J Agric Food Chem 2010; 58: 6754-6761.

56. Zghonda N, Yoshida S, Araki M, et al. Greater effectiveness of epsilon-viniferin in red wine than its monomer resveratrol for inhibiting vascular smooth muscle cell proliferation and migration. Biosci Biotechnol Biochem 2011; 75: 1259-1267.

57. Ohara K, Kusano K, Kitao S, Yanai T, Takata R, Kanauchi O. epsilon-Viniferin, a resveratrol dimer, prevents diet-induced obesity in mice. Biochem Biophys Res Commun 2015; 468: 877-882.

58. Fu J, Jin J, Cichewicz RH, et al. trans-(-)-epsilon-Viniferin increases mitochondrial sirtuin 3 (SIRT3), activates AMP-activated protein kinase (AMPK), and protects cells in models of Huntington Disease. J Biol Chem 2012; 287: 24460-24472.

59. Caillaud M, Guillard J, Richard D, et al. Trans epsilon viniferin decreases amyloid deposits and inflammation in a mouse transgenic Alzheimer model. PLoS One 2019; 14: e0212663.

60. Zhao H, Ma T, Fan B, et al. Protective effect of trans-delta-viniferin against high glucose-induced oxidative stress in human umbilical vein endothelial cells through the SIRT1 pathway. Free Radic Res 2016; 50: 68-83.

61. Ficarra S, Tellone E, Pirolli D, et al. Insights into the properties of the two enantiomers of trans-delta-viniferin, a resveratrol derivative: antioxidant activity, biochemical and molecular modeling studies of its interactions with hemoglobin. Mol Biosyst 2016; 12: 1276-1286.

62. Kikuchi G, Yoshida T, Noguchi M. Heme oxygenase and heme degradation. Biochem Biophys Res Commun 2005; 338: 558-567.

63. Morita T. Heme oxygenase and atherosclerosis. Arterioscler Thromb Vasc Biol 2005; 25: 1786-1795.

64. Loboda A, Damulewicz M, Pyza E, Jozkowicz A, Dulak J. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell Mol Life Sci 2016; 73: 3221-3247.

65. Abraham NG, Junge JM, Drummond GS. Translational Significance of Heme Oxygenase in Obesity and Metabolic Syndrome. Trends Pharmacol Sci 2016; 37: 17-36.

66. Otterbein LE, Bach FH, Alam J, et al. Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat Med 2000; 6: 422-428.

67. Sass G, Soares MC, Yamashita K, et al. Heme oxygenase-1 and its reaction product, carbon monoxide, prevent inflammation-related apoptotic liver damage in mice. Hepatology 2003; 38: 909-918.

68. Brouard S, Otterbein LE, Anrather J, et al. Carbon Monoxide Generated by Heme Oxygenase 1 Suppresses Endothelial Cell Apoptosis. J Exp Med 2000; 192: 1015-1026.

69. Maccarinelli F, Gammella E, Asperti M, et al. Mice lacking mitochondrial ferritin are more sensitive to doxorubicin-mediated cardiotoxicity. J Mol Med 2014; 92: 859-869.

70. Yunoki K, Inoue T, Sugioka K, et al. Association between hemoglobin scavenger receptor and heme oxygenase-1-related anti-inflammatory mediators in human coronary stable and unstable plaques. Hum Pathol 2013; 44: 2256-2265.

71. Troughton JA, Woodside JV, Young IS, et al. Homocysteine and coronary heart disease risk in the PRIME study. Atherosclerosis 2007; 191: 90-97.

72. Clark JE, Foresti R, Sarathchandra P, Kaur H, Green CJ, Motterlini R. Heme oxygenase-1-derived bilirubin ameliorates postischemic myocardial dysfunction. Am J Physiol Heart Circ Physiol 2000; 278: H643-651.

73. Jarmi T, Agarwal A. Heme oxygenase and renal disease. Curr Hypertens Rep 2009; 11: 56-62.

74. Neuzil J, Stocker R. Free and albumin-bound bilirubin are efficient co-antioxidants for alpha-tocopherol, inhibiting plasma and low density lipoprotein lipid peroxidation. J Biol Chem 1994; 269: 16712-16719.

75. Mazza F, Goodman A, Lombardo G, Vanella A, Abraham NG. Heme Oxygenase-1 Gene Expression Attenuates Angiotensin II-Mediated DNA Damage in Endothelial Cells. Exp Biol Med 2003; 228: 576-583.

76. Liu VWT, Huang PL. Cardiovascular roles of nitric oxide: a review of insights from nitric oxide synthase gene disrupted mice. Cardiovasc Res 2008; 77: 19-29.

77. Chen C-A, Druhan LJ, Varadharaj S, Chen Y-R, Zweier JL. Phosphorylation of endothelial nitric-oxide synthase regulates superoxide generation from the enzyme. J Biol Chem 2008; 283: 27038-27047.

78. Eroglu E, Saravi SSS, Sorrentino A, Steinhorn B, Michel T. Discordance between eNOS phosphorylation and activation revealed by multispectral imaging and chemogenetic methods. Proc Natl Acad Sci U S A 2019; 116: 20210.

79. Xia Y, Zweier JL. Superoxide and peroxynitrite generation from inducible nitric oxide synthase in macrophages. Proc Natl Acad Sci U S A 1997; 94: 6954-6958.

80. Somers JR, Beck PL, Lees-Miller JP, et al. iNOS in cardiac myocytes plays a critical role in death in a murine model of hypertrophy induced by calcineurin. Am J Physiol Heart Circ Physiol 2008; 295: H1122-H1131.

81. Chowdhury N, Tisha A, Sarker J, et al. Targeting inducible Nitric Oxide Synthase (iNOS) in the prevention of vascular damage and cardiac inflammation in CVD. J. Angiotherapy 2018; 1: E067-E077.

82. Xia XD, Xu ZJ, Hu XG, Wu CY, Dai YR, Yang L. Impaired iNOS-sGC-cGMP signalling contributes to chronic hypoxic and hypercapnic pulmonary hypertension in rat. Cell Biochem Funct 2012; 30: 279-285.

83. Hillis GS, Flapan AD. Cell adhesion molecules in cardiovascular disease: a clinical perspective. Heart 1998; 79: 429-431.

84. Cybulsky MI, Iiyama K, Li H, et al. A major role for VCAM-1, but not ICAM-1, in early atherosclerosis. J Clin Invest 2001; 107: 1255-1262.

85. Giridharan S, Srinivasan M. Mechanisms of NF-κB p65 and strategies for therapeutic manipulation. J Inflamm Res 2018; 11: 407-419.

86. Morgan MJ, Liu Z-g. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res 2011; 21: 103-115.

87. Xia Y-F, Liu L-P, Zhong C-P, Geng J-G. NF-κB Activation for Constitutive Expression of VCAM-1 and ICAM-1 on B Lymphocytes and Plasma Cells. Biochem Biophys Res Commun 2001; 289: 851-856.

88. Lockyer JM, Colladay JS, Alperin-Lea WL, Hammond T, Buda AJ. Inhibition of nuclear factor-kappaB-mediated adhesion molecule expression in human endothelial cells. Circ Res 1998; 82: 314-320.

89. Soares MP, Seldon MP, Gregoire IP, et al. Heme oxygenase-1 modulates the expression of adhesion molecules associated with endothelial cell activation. J Immunol 2004; 172: 3553-3563.

90. Kim S-R, Bae Y-H, Bae S-K, et al. Visfatin enhances ICAM-1 and VCAM-1 expression through ROS-dependent NF-κB activation in endothelial cells. Biochim Biophys Acta Mol Cell Res 2008; 1783: 886-895.

91. Poznyak AV, Grechko AV, Orekhova VA, Chegodaev YS, Wu W-K, Orekhov AN. Oxidative Stress and Antioxidants in Atherosclerosis Development and Treatment. Biology 2020; 9: 60.

92. Lingappan K. NF-κB in Oxidative Stress. Curr Opin Toxicol 2018; 7: 81-86.

93. Planas JM, Alfaras I, Colom H, Juan ME. The bioavailability and distribution of trans-resveratrol are constrained by ABC transporters. Arch Biochem Biophys 2012; 527: 67-73.

94. Walle T. Bioavailability of resveratrol. Ann N Y Acad Sci 2011; 1215: 9-15.

95. Semba RD, Ferrucci L, Bartali B, et al. Resveratrol Levels and All-Cause Mortality in Older Community-Dwelling Adults. JAMA Intern Med 2014; 174: 1077-1084.

96. Berman AY, Motechin RA, Wiesenfeld MY, Holz MK. The therapeutic potential of resveratrol: a review of clinical trials. NPJ Precis Oncol 2017; 1: 35.

97. Liu Q, Liao X, Xu J, Zhao J, Luo J, Kong L. Development and validation of a sensitive and selective LC–MS/MS method for the determination of trans δ-veniferin, a resveratrol dehydrodimer, in rat plasma and its application to pharmacokinetics and bioavailability studies. J Chromatogr B 2014; 958: 124-129.

98. Bb áková L, Trávní ková M, Filova E, et al. The Role of Vascular Smooth Muscle Cells in the Physiology and Pathophysiology of Blood Vessels. 2018; 2018: 230-257.

99. Lee S, Park Y, Zuidema MY, Hannink M, Zhang C. Effects of interventions on oxidative stress and inflammation of cardiovascular diseases. World J Cardiol 2011; 3: 18-24.

100. Xia N, Forstermann U, Li H. Resveratrol and endothelial nitric oxide. Molecules 2014; 19: 16102-16121.

101. Michell B, Chen Z-p, Tiganis T, et al. Coordinated Control of Endothelial Nitric-oxide Synthase Phosphorylation by Protein Kinase C and the cAMP-dependent Protein Kinase. J Biol Chem 2001; 276: 17625-17628.

102. Mattagajasingh I, Kim CS, Naqvi A, et al. SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase. Proc Natl Acad Sci U S A 2007; 104: 14855-14860.

103. Cai H. Hydrogen peroxide regulation of endothelial function: origins, mechanisms, and consequences. Cardiovasc Res 2005; 68: 26-36.

104. Lee S, Chung J, Ha IS, et al. Hydrogen peroxide increases human leukocyte adhesion to porcine aortic endothelial cells via NFkappaB-dependent up-regulation of VCAM-1. Int Immunol 2007; 19: 1349-1359.

105. Li Q, Verma IM. NF-kappaB regulation in the immune system. Nat Rev Immunol 2002; 2: 725-734.

106. Gilmore TD. The Rel/NF-kappaB signal transduction pathway: introduction. Oncogene 1999; 18: 6842-6844.

107. Noiri E, Lee E, Testa J, et al. Podokinesis in endothelial cell migration: role of nitric oxide. Am J Physiol 1998; 274: C236-244.

108. Luo JD, Wang YY, Fu WL, Wu J, Chen AF. Gene therapy of endothelial nitric oxide synthase and manganese superoxide dismutase restores delayed wound healing in type 1 diabetic mice. Circulation 2004; 110: 2484-2493.

109. Sodhi K, Puri N, Favero G, et al. Fructose Mediated Non-Alcoholic Fatty Liver Is Attenuated by HO-1-SIRT1 Module in Murine Hepatocytes and Mice Fed a High Fructose Diet. PLoS One 2015; 10: e0128648.

110. Luo W, Wang Y, Yang H, et al. Heme oxygenase-1 ameliorates oxidative stress-induced endothelial senescence via regulating endothelial nitric oxide synthase activation and coupling. Aging 2018; 10: 1722-1744.

111. Liu X-m, Peyton KJ, Shebib AR, Wang H, Korthuis RJ, Durante W. Activation of AMPK stimulates heme oxygenase-1 gene expression and human endothelial cell survival. Am J Physiol Heart Circ Physiol 2011; 300: H84-H93.

112. Luo Y, Lu S, Ai Q, et al. SIRT1/AMPK and Akt/eNOS signaling pathways are involved in endothelial protection of total aralosides of Aralia elata (Miq) Seem against high-fat diet-induced atherosclerosis in ApoE-/- mice. Phytother Res 2019; 33: 768-778.

113. David JA, Rifkin WJ, Rabbani PS, Ceradini DJ. The Nrf2/Keap1/ARE Pathway and Oxidative Stress as a Therapeutic Target in Type II Diabetes Mellitus. J Diabetes Res 2017; 2017: 4826724.

114. Nguyen PA, Won JS, Rahman MK, Bae EJ, Cho MK. Modulation of Sirt1/NF-κB interaction of evogliptin is attributed to inhibition of vascular inflammatory response leading to attenuation of atherosclerotic plaque formation. Biochem Pharmacol 2019; 168: 452-464.

115. Chi P-L, Chuang Y-C, Chen Y-W, Lin C-C, Hsiao L-D, Yang C-M. The CO donor CORM-2 inhibits LPS-induced vascular cell adhesion molecule-1 expression and leukocyte adhesion in human rheumatoid synovial fibroblasts. Br J Pharmacol 2014; 171: 2993-3009.

116. Nakamura K, Kageyama S, Yue S, et al. Heme oxygenase-1 regulates sirtuin-1-autophagy pathway in liver transplantation: From mouse to human. Am J Transplant 2018; 18: 1110-1121.

117. Lakhani HV, Zehra M, Pillai SS, et al. Beneficial Role of HO-1-SIRT1 Axis in Attenuating Angiotensin II-Induced Adipocyte Dysfunction. Int J Mol Sci 2019; 20: 3205.

118. Jung TW, Park HS, Jeong JH, Lee T. Salsalate ameliorates the atherosclerotic response through HO-1- and SIRT1-mediated suppression of ER stress and inflammation. Inflamm Res 2019; 68: 655-663.

参考文献をもっと見る