リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Rap1によるインテグリンα4β7の活性制御」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Rap1によるインテグリンα4β7の活性制御

佐藤 健 北里大学

2021.07.20

概要

T 細胞特異的 Rap1 欠損マウス(大腸炎マウス)では病原性の CD4 +エフェクター/メモリーT(TEM)細胞が生成され、大腸粘膜固有層(LP)に過剰に浸潤することによって、大腸炎を⾃然発症する。リンパ球は、インテグリンα4β7 を介して、腸管組織の後毛細血管細静脈に特異的に発現する MAdCAM-1との結合によって血管壁へ接着し、腸管粘膜固有層へ移動する。Rap1 欠損によって、病原性 TEM 細胞の LP へのホーミングが亢進していることが先行研究で明らかとなっている。また、大腸炎マウスにα4β7-MAdCAM-1 の結合を阻害する抗 MAdCAM-1 抗体を投与すると、LP の CD4 + T 細胞数が減少し、

大腸炎の症状が抑制されることを確認した。そこで、Rap1 欠損が、TEM 細胞上のα4β7 の接着活性を上昇させることで、LP へのホーミングを促進している可能性を検討するとともに、それを新たな治療法の開発に結びつけることが⽬的である。

インテグリンのリガンド親和性は立体構造と関連があり、インテグリンが折りたたまれた構造(Bent form)から起き上がった構造(Extended form)に変化することでリガンドへの親和性が高い状態になる。しかしながら、α4β7 の構造変化を評価するシステムが存在しないため、まず、PA タグと抗 PA タグ抗体(NZ-1)を用いて、α4β7 の活性型構造を検出するシステムを確立した。β7 鎖の複数の場所に PAタグを挿⼊したところ、PSI ドメインに PA タグを挿⼊した変異体(PAins2)では、インテグリンの高親和性状態を誘導する Mn2 +存在下において、NZ-1 の結合が促進されることがわかった。このシステムを用いて、Rap1 欠損によるα4β7 への影響を検討したところ、ケモカイン刺激や活性型 Rap1(Rap1V12)の導⼊と同様に、NZ-1 の結合が増大し、α4β7 の活性型構造が誘導されることが明らかとなった。実際に、Rap1 欠損細胞において、可溶性 MAdCAM-1 との結合活性の増加も確認され、α4β7と MAdCAM-1 の親和性が上昇していることが確かめられた。次に、β7 の Mn2 +依存性に露出するエピトープを認識する活性型特異的モノクローナル抗体(mAb)を産生する 2 種類のハイブリドーマを作製した。エピトープマッピングにより、G3 mAb はβ7 の PSI ドメインを認識し、H3 mAb は Hybrid ドメインを認識することがわかった。両⽅のエピトープは、Rap1V12 の導⼊により露出された。しかし、 Rap1 欠損によって、PSI ドメイン内の G3 エピトープは露出が促進されたが、Hybrid ドメイン内の H3エピトープの露出には Rap1-GTP が必須であることがわかった。すなわち、Rap1-GDP はα4β7 の構造変化を抑制し、低親和性の構造を維持しており、Rap1-GTP への変換によって、抑制が解除されるとともに、高親和性の構造が誘導されることが⽰唆された。実際、G3 および H3 mAb を用いて、病原性 Rap1 欠損 TEM 細胞におけるα4β7 の立体構造について調べたところ、Rap1 欠損 TEM 細胞では、野生型 TEM 細胞に比べ、G3 mAb に対する結合が増強されたが、H3 mAb に対する結合活性は顕著に低下していた。

以上の結果より、Rap1-GDP はα4β7 を低親和性構造に維持することが明らかとなり、Rap1 欠損によって病原性TEM 細胞上のα4β7 の低親和性構造が解除され、活性型構造が促進されることでホーミングが亢進し、大腸炎を引き起こすことが⽰唆された。また、このシステムを用いてα4β7 の活性型構造を阻害する低分⼦化合物をスクリーニングすることが可能となり、特許を出願した。今後は、このシステムを用いて、大腸炎の治療薬の探索を進める予定である。

参考文献

1. Hogg, N., Patzak, I. & Willenbrock, F. The insider's guide to leukocyte integrin signalling and function. Nat Rev Immunol 11, 416-426 (2011).

2. Humphries, J.D., Chastney, M.R., Askari, J.A. & Humphries, M.J. Signal transduction via integrin adhesion complexes. Curr Opin Cell Biol 56, 14-21 (2019).

3. Lock, J.G. et al. Clathrin-containing adhesion complexes. J Cell Biol 218, 2086-2095 (2019).

4. Yu, Y. et al. Structural specializations of alpha(4)beta(7), an integrin that mediates rolling adhesion. J Cell Biol 196, 131-146 (2012).

5. Firrell, J.C. & Lipowsky, H.H. Leukocyte margination and deformation in mesenteric venules of rat. Am J Physiol 256, H1667-1674 (1989).

6. Kinashi, T. & Katagiri, K. Regulation of lymphocyte adhesion and migration by the small GTPase Rap1 and its effector molecule, RAPL. Immunol Lett 93, 1-5 (2004).

7. Katagiri, K., Maeda, A., Shimonaka, M. & Kinashi, T. RAPL, a Rap1-binding molecule that mediates Rap1-induced adhesion through spatial regulation of LFA-1. Nat Immunol 4, 741-748 (2003).

8. Lafuente, E. & Boussiotis, V.A. Rap1 regulation of RIAM and cell adhesion. Methods Enzymol 407, 345-358 (2006).

9. Gingras, A.R. et al. Rap1 binding and a lipid-dependent helix in talin F1 domain promote integrin activation in tandem. J Cell Biol 218, 1799-1809 (2019).

10. Ishihara, S. et al. Dual functions of Rap1 are crucial for T-cell homeostasis and prevention of spontaneous colitis. Nat Commun 6, 8982 (2015).

11. Bachmann, M., Kukkurainen, S., Hytonen, V.P. & Wehrle-Haller, B. Cell Adhesion by Integrins. Physiol Rev 99, 1655-1699 (2019).

12. Schurpf, T. & Springer, T.A. Regulation of integrin affinity on cell surfaces. EMBO J 30, 4712-4727 (2011).

13. Kim, M., Carman, C.V. & Springer, T.A. Bidirectional transmembrane signaling by cytoplasmic domain separation in integrins. Science 301, 1720-1725 (2003).

14. Xiao, T., Takagi, J., Coller, B.S., Wang, J.H. & Springer, T.A. Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics. Nature 432, 59-67 (2004).

15. Zhang, K. & Chen, J. The regulation of integrin function by divalent cations. Cell Adh Migr 6, 20-29 (2012).

16. Qi, J. et al. Identification, characterization, and epitope mapping of human monoclonal antibody J19 that specifically recognizes activated integrin alpha4beta7. J Biol Chem 287, 15749-15759 (2012).

17. Hosen, N. et al. The activated conformation of integrin beta7 is a novel multiple myeloma-specific target for CAR T cell therapy. Nat Med 23, 1436-1443 (2017).

18. Fujii, Y. et al. Tailored placement of a turn-forming PA tag into the structured domain of a protein to probe its conformational state. J Cell Sci 129, 1512-1522 (2016).

19. Arimori, T. et al. Fv-clasp: An Artificially Designed Small Antibody Fragment with Improved Production Compatibility, Stability, and Crystallizability. Structure 25, 1611-1622. e4 (2017).

20. Zhu, L. et al. Structure of Rap1b bound to talin reveals a pathway for triggering integrin activation. Nat Commun 8, 1744 (2017).

21. Mora, J.R. et al. Selective imprinting of gut-homing T cells by Peyer's patch dendritic cells. Nature 424, 88-93 (2003).

22. Sun, H. et al. Distinct chemokine signaling regulates integrin ligand specificity to dictate tissue-specific lymphocyte homing. Dev Cell 30, 61-70 (2014).

23. Wang, S. et al. Integrin alpha4beta7 switches its ligand specificity via distinct conformer-specific activation. J Cell Biol 217, 2799-2812 (2018).

24. Li, J. et al. Conformational equilibria and intrinsic affinities define integrin activation.EMBO J 36, 629-645 (2017).

25. Nordenfelt, P., Elliott, H.L. & Springer, T.A. Coordinated integrin activation by actin-dependent force during T-cell migration. Nat Commun 7, 13119 (2016).

26. Honda, S. et al. Topography of ligand-induced binding sites, including a novel cation-sensitive epitope (AP5) at the amino terminus, of the human integrin beta 3 subunit.J Biol Chem 270, 11947-11954 (1995).

27. Pokharel, S.M. et al. Integrin activation by the lipid molecule 25-hydroxycholesterol induces a proinflammatory response. Nat Commun 10, 1482 (2019).

28. Byron, A. et al. Anti-integrin monoclonal antibodies. J Cell Sci 122, 4009-4011 (2009).

29. Wynne, J.P. et al. Rap1-interacting adapter molecule (RIAM) associates with the plasma membrane via a proximity detector. J Cell Biol 199, 317-330 (2012).

30. Katagiri, K. et al. Crucial functions of the Rap1 effector molecule RAPL in lymphocyte and dendritic cell trafficking. Nat Immunol 5, 1045-1051 (2004).

31. Katagiri, K. et al. Rap1 is a potent activation signal for leukocyte function-associated antigen 1 distinct from protein kinase C and phosphatidylinositol-3-OH kinase. Mol Cell Biol 20, 1956-1969 (2000).

32. Katagiri, K., Hattori, M., Minato, N. & Kinashi, T. Rap1 functions as a key regulator of T-cell and antigen-presenting cell interactions and modulates T-cell responses. Mol Cell Biol 22, 1001-1015 (2002).

33. Sado, Y., Inoue, S., Tomono, Y. & Omori, H. Lymphocytes from enlarged iliac lymph nodes as fusion partners for the production of monoclonal antibodies after a single tail base immunization attempt. Acta Histochem Cytochem 39, 89-94 (2006).

34. Ebisuno, Y. et al. Rap1 controls lymphocyte adhesion cascade and interstitial migration within lymph nodes in RAPL-dependent and -independent manners. Blood 115, 804-814 (2009).

35. Katagiri, K., Imamura, M. & Kinashi, T. Spatiotemporal regulation of the kinase Mst1 by binding protein RAPL is critical for lymphocyte polarity and adhesion. Nat Immunol 7, 919-928 (2006).

36. Katagiri, K., Shimonaka, M. & Kinashi, T. Rap1-mediated lymphocyte function-associated antigen-1 activation by the T cell antigen receptor is dependent on phospholipase C-gamma1. J Biol Chem 279, 11875-11881 (2004).

37. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823 (2013).

38. Ran, F.A. et al. Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8, 2281-2308 (2013).

39. Picarella, D. et al. Monoclonal antibodies specific for beta 7 integrin and mucosal addressin cell adhesion molecule-1 (MAdCAM-1) reduce inflammation in the colon of scid mice reconstituted with CD45RBhigh CD4+ T cells. J Immunol 158, 2099-2106 (1997).

40. Chen, H. et al. Extracellular Vesicles from Apoptotic Cells Promote TGFbeta Production in Macrophages and Suppress Experimental Colitis. Sci Rep 9, 5875 (2019).

参考文献をもっと見る