リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「バイオマスから化学品および冶金コークスを製造するための多段熱分解に関する研究」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

バイオマスから化学品および冶金コークスを製造するための多段熱分解に関する研究

魏, 富 WEI, FU ウエイ, フー 九州大学

2022.09.22

概要

The world currently faces the challenge of reducing its reliance on fossil fuels and achieving a sustainable supply of renewable energy. The full development and utilization of lignocellulosic biomass, the only recyclable carbon source, is an important strategy for producing chemicals and liquid fuels to solve energy shortages and reduce CO2 emissions. Pyrolysis of lignocellulosic biomass, which can convert biomass into a series of high value-added products, especially pyrolytic volatiles containing a variety of condensable fine chemicals and non-condensable high calorific value gas products, is one of the most promising biomass utilization technologies. However, due to the influence of various factors such as the overlapping pyrolysis temperature of the components and the difference in reaction conditions, the products from direct pyrolysis have the defects of complex composition, low selectivity of valuable compounds, and poor stability, which make them unable to be directly utilized. Although certain kinds of high value-added compounds can be enriched by catalytic reforming volatiles by selecting suitable catalysts, most of the researches on this catalytic reforming focus on a single target product, and there are few reports on the co-production of multiple target products. This way of consuming the catalyst not only requires a large investment, but also causes the waste of the high value-added component resources of the bio-oil itself. Therefore, suitable pretreatment methods or the combination of different techniques to enrich high value-added compounds are necessary.

Considering the differences in decomposition temperatures and chemical structures of each component, in order to achieve efficient conversion of different biomass components, this thesis innovatively proposes the staged pyrolytic conversion strategy to obtain multi-target products. The brief summary of each chapter of this thesis is as follows:

Chapter 1 presents the background, motivation, objective and outline of this work.
Chapter 2 explores the chemical and thermal characteristics of torrefaction and in-situ pyrolytic reforming of the volatiles through torrefaction-in situ pyrolytic reforming. Also, in order to explore the influence of alkali and alkaline earth metallic species, the effects of water washing on the above described characteristics of the torrefaction and pyrolytic reforming is also reported. The results showed that torrefaction and in-situ pyrolytic reforming both successfully can conserve the chemical energy of biomass with relatively small heat requirements. in-situ pyrolytic reforming can convert the chemical energy of bio-oil to that of CO/H2-rich syngas with higher LHV of 17–18 MJ/Nm3 -dry, which was represented by those of CO and CH4, C2H4, and H2. The pyrolytic reforming can convert at most 90 wt% of the bio-oil from the torrefaction at 300 °C into gas, while selective removal of the heavier components was difficult only by the vapor-phase reforming.

Chapter 3 innovatively proposes and discusses in detail the staged pyrolysis of acid-loaded biomass for the co-production of chemicals and metallurgical coke. Wood biomass loaded with H2SO4 or H3PO4 was selected to produce levoglucosan and levoglucosenone during torrefaction. The obtained char after water washing was further pelletized and then carbonized to produce the coke. The product distribution of pellet carbonization was also analyzed. The results shows that loading acids, especially H2SO4, that are equal to or slightly less than the metals inherent in the biomass can produce more sugars at lower temperatures torrefaction. The maximum total yield of anhydrosugars from wood reached 12.1 wt% and 10.3 wt% after loading with suitable H2SO4 and H3PO4, respectively. The resulting char can be further prepared into high-strength metallurgical coke. In comparison with the direct carbonization of cedar, the staged conversion promoted strength enhancement of metallurgical coke. More importantly, unlike H3PO4 loading which increased the coke yield, H2SO4 loading further promoted the improvement of coke strength. The resulting coke had a much higher strength (24.2 MPa) than that of coke prepared directly from cedar (9.0 MPa). At the same time, the staged pyrolysis also promoted the formation of phenols because the obtained char was rich in lignin, although the yield was slightly low. Most notably was that the staged conversion loading of H2SO4 and H3PO4 achieved the valorization of cedar in total yields of 45.7 and 49.2 wt% for anhydrosugars, phenols, gas, and strong coke, respectively.

Chapter 4 develops a staged steam treatment progress to enrich the high value-added chemicals in the extracts such as terpenoids and coniferyl aldehyde. The results showed that the formation of coniferyl aldehyde was mainly produced from the binding sites of lignin and hemicellulose, not lignin. Steam treatment can promote the production of coniferyl aldehyde, especially at higher water-to-biomass ratio. The staged steam treatment can further improve the selectivity of coniferyl aldehyde in the extracts at 220 °C, and directly extract the natural component terpenoids below 160 °C.

Chapter 5 summarizes the findings described in previous chapters.

この論文で使われている画像

参考文献

Chapter1

[1] BP, Statistical review of world energy 2021, (2021).

[2] P.R. Bhoi, A.S. Ouedraogo, V. Soloiu, R. Quirino, Recent advances on catalysts for improving hydrocarbon compounds in bio-oil of biomass catalytic pyrolysis, Renewable Sustainable Energy Rev, 121, (2020) 109676.

[3] X. Hu, M. Gholizadeh, Biomass pyrolysis: A review of the process development and challenges from initial researches up to the commercialisation stage, J Energy Chem, 39, (2019) 109-143.

[4] W. Chen, M. Gong, K. Li, M. Xia, Z. Chen, H. Xiao, Y. Fang, Y. Chen, H. Yang, H. Chen, Insight into KOH activation mechanism during biomass pyrolysis: Chemical reactions between O-containing groups and KOH, Appl Energy, 278, (2020) 115730.

[5] T. Dickerson, J. Soria, Catalytic fast pyrolysis: A review, Energies, 6, (2013) 514-538.

[6] G. W. Huber, S. Iborra, A. Corma, Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering, Chem Rev, 106, (2006,) 4044-4098.

[7] J.C. Serrano-Ruiz, J.A. Dumesic, Catalytic routes for the conversion of biomass into liquid hydrocarbon transportation fuels, Energy Environ Sci, 4, (2011) 83-99.

[8] S. Stephanidis, C. Nitsos, K. Kalogiannis, E.F. Iliopoulou, A.A. Lappas, Catalytic upgrading of lignocellulosic biomass pyrolysis vapours: Effect of hydrothermal pretreatment of biomass, Catal Today, 167, (2011) 37-45.

[9] A. Galadima, O. Muraza, In situ fast pyrolysis of biomass with zeolite catalysts for bioaromatics/gasoline production: A review, Energy Convers Manage, 105, (2015) 338- 354.

[10] M.I. Jahirul, M.G. Rasul, A.A. Chowdhury, N. Ashwath, Biofuels production through biomass pyrolysis—A technological review, Energies 5, (2012) 4952-5001.

[11] S. Wang, G. Dai, H. Yang, Z. Luo, Lignocellulosic biomass pyrolysis mechanism: A stateof-the-art review, Prog Energy Combust Sci, 62, (2017) 33-86.

[12] F.M. Demirbas, Biorefineries for biofuel upgrading: A critical review, Appl Energy, 86, (2009) S151-S161.

[13] M. Asadullah, A.M. Adi, N. Suhada, N.H. Malek, M.I. Saringat, A. Azdarpour, Optimization of palm kernel shell torrefaction to produce energy densified bio-coal, Energy Convers Manage, 88, (2014) 1086-1093.

[14] H.C. Ong, W.-H. Chen, A. Farooq, Y.Y. Gan, K.T. Lee, V. Ashokkumar, Catalytic thermochemical conversion of biomass for biofuel production: A comprehensive review, Renewable Sustainable Energy Rev, 113, (2019) 109266.

[15] D.O. Glushkov, G.S. Nyashina, R. Anand, P.A. Strizhak, Composition of gas produced from the direct combustion and pyrolysis of biomass, Process Saf Environ Prot, 156, (2021) 43-56.

[16] S. Pang, Advances in thermochemical conversion of woody biomass to energy, fuels and chemicals, Biotechnol Adv, 37, (2019) 589-597.

[17] V.S. Sikarwar, M. Zhao, P. Clough, J. Yao, X. Zhong, M.Z. Memon, N. Shah, E.J. Anthony, P.S. Fennell, An overview of advances in biomass gasification, Energy Environ Sci, 9, (2016) 2939-2977.

[18] A.R.K. Gollakota, N. Kishore, S. Gu, A review on hydrothermal liquefaction of biomass, Renewable Sustainable Energy Rev, 81, (2018) 1378-1392.

[19] M.B. M. Balat, E. Kirtay, H. Balat, Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1: Pyrolysis systems, Energy Convers Manage, 50, (2009) 3147- 3157.

[20] A.V. Bridgwater, G.V.C. Peacocke, Fast pyrolysis processes for biomass, Renewable Sustainable Energy Rev, 4, (2000) 1-73.

[21] D. Mohan, C.U. Pittman Jr, P.H. Steele, Pyrolysis of wood/biomass for bio-oil: A critical review, Energy Fuels, 20, (2006) 848-889.

[22] R. Kumar, V. Strezov, H. Weldekidan, J. He, S. Singh, T. Kan, B. Dastjerdi, Lignocellulose biomass pyrolysis for bio-oil production: A review of biomass pre-treatment methods for production of drop-in fuels, Renewable Sustainable Energy Rev, 123, (2020) 109763.

Chapter2

[1] G.W. Huber, S. Iborra, A. Corma, Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering, Chem. Rev. 106 (2006) 4044-4098.

[2] A. Corma, S. Iborra, A. Velty, Chemical routes for the transformation of biomass into chemicals, Chem. Rev. 107 (2007) 2411-2502.

[3] M.J.C. van der Stelt, H. Gerhauser, J.H.A. Kiel, K.J. Ptasinski, Biomass upgrading by torrefaction for the production of biofuels: A review, Biomass Bioenergy 35 (2011) 3748- 3762.

[4] M.N. Cahyanti, T. Doddapaneni, T. Kikas, Biomass torrefaction: An overview on process parameters, economic and environmental aspects and recent advancements, Bioresour. Technol. 301 (2020) 122737.

[5] A. Zheng, Z. Zhao, S. Chang, Z. Huang, X. Wang, F. He, H. Li, Effect of torrefaction on structure and fast pyrolysis behavior of corncobs, Bioresour. Technol. 128 (2013) 370-377.

[6] S. Kudo, J. Okada, S. Ikeda, T. Yoshida, S. Asano, J.-i. Hayashi, Improvement of pelletability of woody biomass by torrefaction under pressurized steam, Energy Fuels 33 (2019) 11253-11262.

[7] S. Neupane, S. Adhikari, Z. Wang, A.J. Ragauskas, Y. Pu, Effect of torrefaction on biomass structure and hydrocarbon production from fast pyrolysis, Green Chem. 17 (2015) 2406- 2417.

[8] S. Konsomboon, J.-M. Commandré, S. Fukuda, Torrefaction of various biomass feedstocks and its impact on the reduction of tar produced during pyrolysis, Energy Fuels 33 (2019) 3257-3266.

[9] S. Ren, H. Lei, L. Wang, Q. Bu, S. Chen, J. Wu, J. Julson, R. Ruan, The effects of torrefaction on compositions of bio-oil and syngas from biomass pyrolysis by microwave heating, Bioresour. Technol. 135 (2013) 659-664.

[10] R.J.M. Westerhof, D.W.F. Brilman, M. Garcia-Perez, Z. Wang, S.R.G. Oudenhoven, S.R.A. Kersten, Stepwise fast pyrolysis of pine wood, Energy Fuels 26 (2012) 7263-7273.

[11] S.-S. Liaw, Z. Wang, P. Ndegwa, C. Frear, S. Ha, C.-Z. Li, M. Garcia-Perez, Effect of pyrolysis temperature on the yield and properties of bio-oils obtained from the auger pyrolysis of Douglas Fir wood, J. Anal. Appl. Pyrolysis 93 (2012) 52-62.

[12] P. Nanou, M.C. Carbo, J.H.A. Kiel, Detailed mapping of the mass and energy balance of a continuous biomass torrefaction plant, Biomass Bioenergy 89 (2016) 67-77.

[13] L. Kumar, A.A. Koukoulas, S. Mani, J. Satyavolu, Integrating torrefaction in the wood pellet industry: A critical review, Energy Fuels 31 (2016) 37-54.

[14] S. Zhang, Y. Su, K. Ding, S. Zhu, H. Zhang, X. Liu, Y. Xiong, Effect of inorganic species on torrefaction process and product properties of rice husk, Bioresour. Technol. 265 (2018) 450-455.

[15] S. Chang, Z. Zhao, A. Zheng, F. He, Z. Huang, H. Li, Characterization of products from torrefaction of sprucewood and bagasse in an auger Reactor, Energy Fuels 26 (2012) 7009- 7017.

[16] J. Huang, Y. Qiao, Z. Wang, H. Liu, B. Wang, Y. Yu, Valorization of food waste via torrefaction: Effect of food waste type on the characteristics of torrefaction products, Energy Fuels 34 (2020) 6041-6051.

[17] S. Zhang, Q. Dong, L. Zhang, Y. Xiong, Effects of water washing and torrefaction on the pyrolysis behavior and kinetics of rice husk through TGA and Py-GC/MS, Bioresour. Technol. 199 (2016) 352-361.

[18] S.-S. Liaw, C. Frear, W. Lei, S. Zhang, M. Garcia-Perez, Anaerobic digestion of C1–C4 light oxygenated organic compounds derived from the torrefaction of lignocellulosic materials, Fuel Process. Technol. 131 (2015) 150-158.

[19] T. Doddapaneni, R. Praveenkumar, H. Tolvanen, M.R.T. Palmroth, J. Konttinen, J. Rintala, Anaerobic batch conversion of pine wood torrefaction condensate, Bioresour. Technol. 225 (2017) 299-307.

[20] T.R.K.C. Doddapaneni, R. Jain, R. Praveenkumar, J. Rintala, H. Romar, J. Konttinen, Adsorption of furfural from torrefaction condensate using torrefied biomass, Chem. Eng. J. 334 (2018) 558-568.

[21] L. Santamaria, G. Lopez, E. Fernandez, M. Cortazar, A. Arregi, M. Olazar, J. Bilbao, Progress on catalyst development for the steam reforming of biomass and waste plastics pyrolysis volatiles: A review, Energy Fuels 35 (2021) 17051-17084.

[22] G. Guan, M. Kaewpanha, X. Hao, A. Abudula, Catalytic steam reforming of biomass tar: Prospects and challenges, Renewable Sustainable Energy Rev. 58 (2016) 450-461.

[23] S.B. Saleh, B.B. Hansen, P.A. Jensen, K. Dam-Johansen, Influence of biomass chemical properties on torrefaction characteristics, Energy Fuels 27 (2013) 7541-7548.

[24] L. Deng, T. Zhang, D. Che, Effect of water washing on fuel properties, pyrolysis and combustion characteristics, and ash fusibility of biomass, Fuel Process. Technol. 106 (2013) 712-720.

[25] T. Okuno, N. Sonoyama, J.-i. Hayashi, C.-Z. Li, C. Sathe, T. Chiba, Primary release of alkali and alkaline earth metallic species during the pyrolysis of pulverized biomass, Energy Fuels 19 (2005) 2164-2171.

[26] Karnowo, Z.F. Zahara, S. Kudo, K. Norinaga, J.-i. Hayashi, Leaching of alkali and alkaline earth metallic species from rice husk with bio-oil from its pyrolysis, Energy Fuels 28 (2014) 6459-6466.

[27] H. Yang, S. Kudo, H.-P. Kuo, K. Norinaga, A. Mori, O. Mašek, J.-i. Hayashi, Estimation of enthalpy of bio-oil vapor and heat required for pyrolysis of biomass, Energy Fuels 27 (2013) 2675-2686.

[28] S. Kudo, Y. Hachiyama, Y. Takashima, J. Tahara, S. Idesh, K. Norinaga, J.-i. Hayashi, Catalytic hydrothermal reforming of lignin in aqueous alkaline medium, Energy Fuels 28 (2013) 76-85.

[29] L. Shi, S. Yu, F.-C. Wang, J. Wang, Pyrolytic characteristics of rice straw and its constituents catalyzed by internal alkali and alkali earth metals, Fuel 96 (2012) 586-594.

[30] K. Zeng, X. He, H. Yang, X. Wang, H. Chen, The effect of combined pretreatments on the pyrolysis of corn stalk, Bioresour. Technol. 281 (2019) 309-317.

[31] D. Chen, A. Gao, K. Cen, J. Zhang, X. Cao, Z. Ma, Investigation of biomass torrefaction based on three major components: Hemicellulose, cellulose, and lignin, Energy Convers. Manage. 169 (2018) 228-237.

[32] D. Mourant, Z. Wang, M. He, X.S. Wang, M. Garcia-Perez, K. Ling, C.-Z. Li, Mallee wood fast pyrolysis: Effects of alkali and alkaline earth metallic species on the yield and composition of bio-oil, Fuel 90 (2011) 2915-2922.

[33] P.R. Patwardhan, R.C. Brown, B.H. Shanks, Product distribution from the fast pyrolysis of hemicellulose, ChemSusChem 4 (2011) 636-643.

[34] P.R. Patwardhan, D.L. Dalluge, B.H. Shanks, R.C. Brown, Distinguishing primary and secondary reactions of cellulose pyrolysis, Bioresour. Technol. 102 (2011) 5265-5269.

[35] Y. Le Brech, T. Ghislain, S. Leclerc, M. Bouroukba, L. Delmotte, N. Brosse, C. Snape, P. Chaimbault, A. Dufour, Effect of potassium on the mechanisms of biomass pyrolysis studied using complementary analytical techniques, ChemSusChem 9 (2016) 863-872.

[36] P.R. Patwardhan, J.A. Satrio, R.C. Brown, B.H. Shanks, Product distribution from fast pyrolysis of glucose-based carbohydrates, J. Anal. Appl. Pyrolysis 86 (2009) 323-330.

[37] S. Wang, B. Ru, H. Lin, Z. Luo, Degradation mechanism of monosaccharides and xylan under pyrolytic conditions with theoretic modeling on the energy profiles, Bioresour. Technol. 143 (2013) 378-383.

[38] Y.S. Choi, P.A. Johnston, R.C. Brown, B.H. Shanks, K.-H. Lee, Detailed characterization of red oak-derived pyrolysis oil: Integrated use of GC, HPLC, IC, GPC and Karl-Fischer, J. Anal. Appl. Pyrolysis 110 (2014) 147-154.

[39] X. Zhou, W. Li, R. Mabon, L.J. Broadbelt, A mechanistic model of fast pyrolysis of hemicellulose, Energy Environ. Sci. 11 (2018) 1240-1260.

[40] Y. Yu, Y.W. Chua, H. Wu, Characterization of pyrolytic sugars in bio-oil produced from biomass fast pyrolysis, Energy Fuels 30 (2016) 4145-4149.

[41] D.E. Daugaard, R.C. Brown, Enthalpy for pyrolysis for several types of biomass, Energy Fuels 17 (2003) 934-939.

[42] J.R. Galdámez, L. García, R. Bilbao, Hydrogen production by steam reforming of bio-oil using coprecipitated Ni−Al catalysts. Acetic acid as a model compound., Energy Fuels 19 (2005) 1133-1142.

[43] M.C. Ramos, A.I. Navascués, L. García, R. Bilbao, Hydrogen production by catalytic steam reforming of acetol, a model compound of bio-oil, Ind. Eng. Chem. Res. 46 (2007) 2399- 2406.

[44] S. Guo, H. Liang, D. Che, H. Liu, B. Sun, Quantitative study of the pyrolysis of levoglucosan to generate small molecular gases, RSC Adv. 9 (2019) 18791-18802.

[45] F. Valentini, V. Kozell, C. Petrucci, A. Marrocchi, Y. Gu, D. Gelman, L. Vaccaro, Formic acid, a biomass-derived source of energy and hydrogen for biomass upgrading, Energy Environ. Sci. 12 (2019) 2646-2664.

[46] A. Fukutome, H. Kawamoto, S. Saka, Processes forming gas, tar, and coke in cellulose gasification from gas-phase reactions of levoglucosan as Intermediate, ChemSusChem 8 (2015) 2240-2249.

[47] N. Akiya, P.E. Savage, Role of water in formic acid decomposition, AIChE J. 44 (1998) 405-415.

[48] C. Cavallotti, M. Pelucchi, A. Frassoldati, Analysis of acetic acid gas phase reactivity: Rate constant estimation and kinetic simulations, Proc. Combust. Inst. 37 (2019) 539-546.

[49] P.R. Patwardhan, R.C. Brown, B.H. Shanks, Understanding the fast pyrolysis of lignin, ChemSusChem 4 (2011) 1629-1636.

[50] K.B. A. B. Lovell, I. Glassman, The gas phase pyrolysis of phenol, Int. J. Chem. Kinet. 21 (1989) 547-560.

[51] M.L. J.A. Mulholl, D.H. Kim, Pyrolytic growth of polycyclic aromatic hydrocarbons by cyclopentadienyl moieties, Proc. Combust. Inst. 28 (2000) 2593-2599.

Chapter3

[1] J.R. Regalbuto, Cellulosic biofuels—got gasoline?, Science 325 (2009) 822-824.

[2] Q. Yang, H. Zhou, P. Bartocci, F. Fantozzi, O. Masek, F.A. Agblevor, Z. Wei, H. Yang, H. Chen, X. Lu, G. Chen, C. Zheng, C.P. Nielsen, M.B. McElroy, Prospective contributions of biomass pyrolysis to China's 2050 carbon reduction and renewable energy goals, Nat. Commun. 12 (2021) 1698.

[3] A. Corma, S. Iborra, A. Velty, Chemical routes for the transformation of biomass into chemicals, Chem. Rev. 107 (2007) 2411-2502.

[4] G.W. Huber, S. Iborra, A. Corma, Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering, Chem. Rev. 106 (2006) 4044-4098.

[5] A. Hasanbeigi, M. Arens, L. Price, Alternative emerging ironmaking technologies for energy-efficiency and carbon dioxide emissions reduction: A technical review, Renewable Sustainable Energy Rev. 33 (2014) 645-658.

[6] S.J. Davis, N.S. Lewis, M. Shaner, S. Aggarwal, D. Arent, I.L. Azevedo, S.M. Benson, T. Bradley, J. Brouwer, Y.M. Chiang, C.T.M. Clack, A. Cohen, S. Doig, J. Edmonds, P. Fennell, C.B. Field, B. Hannegan, B.M. Hodge, M.I. Hoffert, E. Ingersoll, P. Jaramillo, K.S. Lackner, K.J. Mach, M. Mastrandrea, J. Ogden, P.F. Peterson, D.L. Sanchez, D. Sperling, J. Stagner, J.E. Trancik, C.J. Yang, K. Caldeira, Net-zero emissions energy systems, Science 360 (2018).

[7] L.J. Sonter, D.J. Barrett, C.J. Moran, B.S. Soares-Filho, Carbon emissions due to deforestation for the production of charcoal used in Brazil’s steel industry, Nat. Clim. Change 5 (2015) 359-363.

[8] P. Rousset, A. Caldeira-Pires, A. Sablowski, T. Rodrigues, LCA of eucalyptus wood charcoal briquettes, J. Cleaner Prod. 19 (2011) 1647-1653.

[9] M.W. Seo, H.M. Jeong, W.J. Lee, S.J. Yoon, H.W. Ra, Y.K. Kim, D. Lee, S.W. Han, S.D. Kim, J.G. Lee, S.M. Jeong, Carbonization characteristics of biomass/coking coal blends for the application of bio-coke, Chem. Eng. J. 394 (2020) 124943.

[10] R. Wei, L. Zhang, D. Cang, J. Li, X. Li, C.C. Xu, Current status and potential of biomass utilization in ferrous metallurgical industry, Renewable Sustainable Energy Rev. 68 (2017) 511-524.

[11] Y. Mochizuki, N. Tsubouchi, Preparation of pelletized coke by co-carbonization of caking coal and pyrolyzed char modified with tar produced during pyrolysis of woody biomass, Fuel Process. Technol. 193 (2019) 328-337.

[12] S. Kudo, A. Mori, G. Hayashi, T. Yoshida, N. Okuyama, K. Norinaga, J.-i. Hayashi, Characteristic properties of lignite to be converted to high-strength coke by hot briquetting and carbonization, Energy Fuels 32 (2017) 4364-4371.

[13] A. Mori, S. Kubo, S. Kudo, K. Norinaga, T. Kanai, H. Aoki, J.-i. Hayashi, Preparation of high-strength coke by carbonization of hot-briquetted Victorian brown coal, Energy Fuels 26 (2011) 296-301.

[14] M. Matoba, S. Kudo, A. Mori, K. Norinaga, K. Uchida, Y. Dohi, K. Uebo, J.-i. Hayashi, Production of high-strength cokes from non-/slightly caking coals. Part I: Effects of coal pretreatment and variables for briquetting and carbonization on coke properties, ISIJ Int. 59 (2019) 1440-1448.

[15] S. Kudo, A. Mori, R. Soejima, F. Murayama, Karnowo, S. Nomura, Y. Dohi, K. Norinaga, J.-i. Hayashi, Preparation of coke from hydrothermally treated biomass in sequence of hot briquetting and carbonization, ISIJ Int. 54 (2014) 2461-2469.

[16] S. Kudo, N. Goto, J. Sperry, K. Norinaga, J.-i. Hayashi, Production of levoglucosenone and dihydrolevoglucosenone by catalytic reforming of volatiles from cellulose pyrolysis using supported ionic liquid phase, ACS Sustainable Chem. Eng. 5 (2016) 1132-1140.

[17] S. Kudo, Z. Zhou, K. Norinaga, J.-i. Hayashi, Efficient levoglucosenone production by catalytic pyrolysis of cellulose mixed with ionic liquid, Green Chem. 13 (2011) 3306.

[18] S. Maduskar, V. Maliekkal, M. Neurock, P.J. Dauenhauer, On the yield of levoglucosan from cellulose pyrolysis, ACS Sustainable Chem. Eng. 6 (2018) 7017-7025.

[19] I. Itabaiana Junior, M. Avelar do Nascimento, R.O.M.A. de Souza, A. Dufour, R. Wojcieszak, Levoglucosan: a promising platform molecule?, Green Chem. 22 (2020) 5859-5880.

[20] H. Yang, R. Yan, H. Chen, D.H. Lee, C. Zheng, Characteristics of hemicellulose, cellulose and lignin pyrolysis, Fuel 86 (2007) 1781-1788.

[21] D. Chen, A. Gao, K. Cen, J. Zhang, X. Cao, Z. Ma, Investigation of biomass torrefaction based on three major components: Hemicellulose, cellulose, and lignin, Energy Convers. Manage. 169 (2018) 228-237.

[22] X. Zhou, W. Li, R. Mabon, L.J. Broadbelt, A mechanistic model of fast pyrolysis of hemicellulose, Energy Environ. Sci. 11 (2018) 1240-1260.

[23] P.R. Patwardhan, J.A. Satrio, R.C. Brown, B.H. Shanks, Influence of inorganic salts on the primary pyrolysis products of cellulose, Bioresour. Technol. 101 (2010) 4646-4655.

[24] P.R. Patwardhan, R.C. Brown, B.H. Shanks, Product distribution from the fast pyrolysis of hemicellulose, ChemSusChem 4 (2011) 636-643.

[25] N. Sonoyama, J.-i. Hayashi, Characterisation of coal and biomass based on kinetic parameter distributions for pyrolysis, Fuel 114 (2013) 206-215.

[26] J. Zhang, Y.S. Choi, C.G. Yoo, T.H. Kim, R.C. Brown, B.H. Shanks, Cellulose– hemicellulose and cellulose–lignin interactions during fast pyrolysis, ACS Sustainable Chem. Eng. 3 (2015) 293-301.

[27] P.J. de Wild, H.d. Uil, J.H. Reith, J.H.A. Kiel, H.J. Heeres, Biomass valorisation by staged degasification: A new pyrolysis-based thermochemical conversion option to produce value-added chemicals from lignocellulosic biomass, J. Anal. Appl. Pyrolysis 85 (2009) 124-133.

[28] F. Cao, S. Xia, X. Yang, C. Wang, Q. Wang, C. Cui, A. Zheng, Lowering the pyrolysis temperature of lignocellulosic biomass by H2SO4 loading for enhancing the production of platform chemicals, Chem. Eng. J. 385 (2020) 123809.

[29] N. Kuzhiyil, D. Dalluge, X. Bai, K.H. Kim, R.C. Brown, Pyrolytic sugars from cellulosic biomass, ChemSusChem 5 (2012) 2228-2236.

[30] B. Hu, Q. Lu, Y.-t. Wu, W.-l. Xie, M.-s. Cui, J. Liu, C.-q. Dong, Y.-p. Yang, Insight into the formation mechanism of levoglucosenone in phosphoric acid-catalyzed fast pyrolysis of cellulose, J. Energy Chem. 43 (2020) 78-89.

[31] G. Dobele, T. Dizhbite, G. Rossinskaja, G. Telysheva, D. Meier, S. Radtke, O. Faix, Pretreatment of biomass with phosphoric acid prior to fast pyrolysis, J. Anal. Appl. Pyrolysis 68-69 (2003) 197-211.

[32] J. Liu, L. Luo, J. Ma, H. Zhang, X. Jiang, Chemical properties of superfine pulverized coal particles. 3. Nuclear magnetic resonance analysis of carbon structural features, Energy Fuels 30 (2016) 6321-6329.

[33] Y. Le Brech, J. Raya, L. Delmotte, N. Brosse, R. Gadiou, A. Dufour, Characterization of biomass char formation investigated by advanced solid state NMR, Carbon 108 (2016) 165-177.

[34] B.H. A. Sluiter, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton, and D. Crocker, Determination of structural carbohydrates and lignin in biomass, NREL/TP-510-42618, US National Renewable Energy Laboratory, (2008).

[35] Karnowo, S. Kudo, A. Mori, Z.F. Zahara, K. Norinaga, J.-i. Hayashi, Modification of reactivity and strength of formed coke from Victorian lignite by leaching of metallic species, ISIJ Int. 55 (2015) 765-774.

[36] P.R. Patwardhan, D.L. Dalluge, B.H. Shanks, R.C. Brown, Distinguishing primary and secondary reactions of cellulose pyrolysis, Bioresour. Technol. 102 (2011) 5265-5269.

[37] X. Yang, Y. Zhao, W. Li, R. Li, Y. Wu, Unveiling the pyrolysis mechanisms of hemicellulose: Experimental and theoretical studies, Energy Fuels 33 (2019) 4352-4360.

[38] S. Zhou, Y. Xue, J. Cai, C. Cui, Z. Ni, Z. Zhou, An understanding for improved biomass pyrolysis: Toward a systematic comparison of different acid pretreatments, Chem. Eng. J. 411 (2021) 128513.

[39] S.M. Shaik, P.N. Sharratt, R.B.H. Tan, Influence of selected mineral acids and alkalis on cellulose pyrolysis pathways and anhydrosaccharide formation, J. Anal. Appl. Pyrolysis 104 (2013) 234-242.

[40] S. Zhou, N.B. Osman, H. Li, A.G. McDonald, D. Mourant, C.-Z. Li, M. Garcia-Perez, Effect of sulfuric acid addition on the yield and composition of lignin derived oligomers obtained by the auger and fast pyrolysis of Douglas-fir wood, Fuel 103 (2013) 512-523.

[41] S. Zhou, D. Mourant, C. Lievens, Y. Wang, C.-Z. Li, M. Garcia-Perez, Effect of sulfuric acid concentration on the yield and properties of the bio-oils obtained from the auger and fast pyrolysis of Douglas Fir, Fuel 104 (2013) 536-546.

[42] A. Fukutome, H. Kawamoto, S. Saka, Processes forming gas, tar, and coke in cellulose gasification from gas-phase reactions of levoglucosan as Intermediate, ChemSusChem 8 (2015) 2240-2249.

[43] J.W. Patrick, A.E. Stacey, H.C. Wilkinson, The strength of industrial cokes: Part 2. Tensile strength of foundry cokes, Fuel 51 (1972) 174-179.

[44] Q.-V. Bach, Ø. Skreiberg, Upgrading biomass fuels via wet torrefaction: A review and comparison with dry torrefaction, Renewable Sustainable Energy Rev. 54 (2016) 665-677.

[45] P. Pradhan, S.M. Mahajani, A. Arora, Production and utilization of fuel pellets from biomass: A review, Fuel Process. Technol. 181 (2018) 215-232.

[46] S. Kudo, J. Okada, S. Ikeda, T. Yoshida, S. Asano, J.-i. Hayashi, Improvement of pelletability of woody biomass by torrefaction under pressurized steam, Energy Fuels 33 (2019) 11253-11262.

[47] A. Wibawa, U.P.M. Ashik, S. Kudo, S. Asano, Y. Dohi, T. Yamamoto, Y. Kimura, X. Gao, J.-i. Hayashi, Preparation of formed coke from biomass by sequenence of Torrefaction, binderless hot briquetting and carbonization, ISIJ Int. (in press).

[48] S. Wang, Z. Li, X. Bai, W. Yi, P. Fu, Influence of inherent hierarchical porous char with alkali and alkaline earth metallic species on lignin pyrolysis, Bioresour. Technol. 268 (2018) 323-331.

[49] D.L. Dalluge, K.H. Kim, R.C. Brown, The influence of alkali and alkaline earth metals on char and volatile aromatics from fast pyrolysis of lignin, J. Anal. Appl. Pyrolysis 127 (2017) 385-393.

[50] Q.-V. Bach, K.-Q. Tran, R.A. Khalil, Ø. Skreiberg, G. Seisenbaeva, Comparative assessment of wet torrefaction, Energy Fuels 27 (2013) 6743-6753.

[51] T. Miyagawa, Chemical properties of blast-furnace coke, Nenryo Kyokaishi 58 (1979) 940-953.

[52] S. Nomura, M. Naito, K. Yamaguchi, Post-reaction strength of catalyst-added highly reactive coke, ISIJ Int. 47 (2007) 831-839.

[53] T. Yamamoto, T. Sato, H. Fujimoto, T. Anyashiki, K. Fukada, M. Sato, K. Takeda, T. Ariyama, Reaction behavior of ferro coke and its evaluation in blast furnace, Tetsu-toHagane 97 (2011) 501-509.

Chapter4

[1] R.A. Sheldon, Green and sustainable manufacture of chemicals from biomass: state of the art, Green Chem. 16 (2014) 950-963.

[2] M. Wang, R. Dewil, K. Maniatis, J. Wheeldon, T. Tan, J. Baeyens, Y. Fang, Biomassderived aviation fuels: Challenges and perspective, Prog. Energy Combust. Sci. 74 (2019) 31-49.

[3] A. Corma, S. Iborra, A. Velty, Chemical routes for the transformation of biomass into chemicals, Chem. Rev. 107 (2007) 2411-2502.

[4] C. Turek, F.C. Stintzing, Stability of Essential Oils: A Review, Comprehensive Reviews in Food Science and Food Safety 12 (2013) 40-53.

[5] C.S. Tavares, A. Martins, M.L. Faleiro, M.G. Miguel, L.C. Duarte, J.A. Gameiro, L.B. Roseiro, A.C. Figueiredo, Bioproducts from forest biomass: Essential oils and hydrolates from wastes of Cupressus lusitanica Mill. and Cistus ladanifer L, Ind. Crops Prod. 144 (2020) 112034.

[6] Y. Luo, Z. Li, X. Li, X. Liu, J. Fan, J.H. Clark, C. Hu, The production of furfural directly from hemicellulose in lignocellulosic biomass: A review, Catalysis Today 319 (2019) 14- 24.

[7] C. Chio, M. Sain, W. Qin, Lignin utilization: A review of lignin depolymerization from various aspects, Renewable Sustainable Energy Rev. 107 (2019) 232-249.

[8] K. Liu, H. Du, T. Zheng, H. Liu, M. Zhang, R. Zhang, H. Li, H. Xie, X. Zhang, M. Ma, C. Si, Recent advances in cellulose and its derivatives for oilfield applications, Carbohydrate polymers 259 (2021) 117740. 125

[9] X. Zhang, H. Gao, L. Zhang, D. Liu, X. Ye, Extraction of essential oil from discarded tobacco leaves by solvent extraction and steam distillation, and identification of its chemical composition, Ind. Crops Prod. 39 (2012) 162-169.

[10] P. Masango, Cleaner production of essential oils by steam distillation, J. Cleaner Prod. 13 (2005) 833-839.

[11] R. Zhu, V. Yadama, Effects of hot water extraction pretreatment on physicochemical changes of Douglas fir, Biomass Bioenergy 90 (2016) 78-89.

[12] A. EPütün, E. Apaydin, E. Pütün, Bio-oil production from pyrolysis and steam pyrolysis of soybean-cake: product yields and composition, Energy 27 (2002) 703-713.

[13] S. Kudo, Y. Hachiyama, Y. Takashima, J. Tahara, S. Idesh, K. Norinaga, J.-i. Hayashi, Catalytic hydrothermal reforming of lignin in aqueous alkaline medium, Energy Fuels 28 (2013) 76-85.

[14] A. Sluiter, B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton, D. Crocker, Determination of structural carbohydrates and lignin in biomass: Laboratory Analytical Procedure (LAP), (2008).

参考文献をもっと見る