リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「THE POTENTIAL RENEWABLE ENERGY RESOURCE DEVELOPMENT AND UTILIZATION OF BIOMASS」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

THE POTENTIAL RENEWABLE ENERGY RESOURCE DEVELOPMENT AND UTILIZATION OF BIOMASS

SARKAR JAYANTO KUMAR 埼玉大学 DOI:info:doi/10.24561/00019369

2020

概要

Coconut shell, coconut husk and jute stick are considering as an ordinary biomass waste. From the ancient age to now these wastages are being used solely for cooking purpose in rural areas. However, despite its enormous potentiality as an energy sources, these are hardly been studied and its thermal characteristics are still unknown. Moreover, these biomasses can be utilized for production of bioenergy by employing pyrolysis and gasification technology. Biomass as a form of energy source may be utilized in two distinct ways. First, directly by burning the biomass and secondly, by converting it into solid, liquid or gaseous fuels. Pyrolysis and gasification are the most efficient method for the conversion of chemical energy stored in biomass into heat and/or other useful forms of energy. Nevertheless, pyrolysis and gasification of biomass is a complex chemical process with some operational and environmental challenges. Thus, the objective of present work is to focus on dominant parameters that influences the process, such as temperature, heating rate and AAEM (alkali and alkaline earth metal) catalytic effect on the yield and quality of pyrolysis product. This study also clarified the effect of AAEM catalyst on the pyrolysis and gasification behaviors and characterization of waste biomasses.
In the first phase of experiment, we examine the impact of pyrolysis temperature on the outcome yields of waste coconut shells in a fixed bed reactor under varying conditions of pyrolysis temperature (i.e. 400°C to 800°C). The resulting bio-chars were characterized by elemental analysis and scanning electron microscope (SEM). The output of bio-char was diminished pointedly, from 33.6% to 28.6%, when the pyrolysis temperature ranged from 400 to 600°C, respectively. In addition, the bio-chars were carbonized with the expansion of the pyrolysis temperature. Experimental results showed that the highest bio-oil yield was acquired at 600°C , at about 48.7%.
In the second phase of experiment, the influence of the different heating rates on pyrolysis behaviors, and kinetics of jute stick were investigated to justify the jute stick as a potential source of bioenergy. Pyrolysis experiments were carried out at different heating rates of 10, 20, 30 and 40°C/min upon varying condition temperature extending from room temperature to 900°C by utilizing the thermogravimetric analyzer (TG-DTA) and a fixed bed pyrolysis reactor. Two different kinetic methods i.e., Kissinger- Akahira-Sunose (KAS) and Ozawa-Flynn-Wall (OFW), were employed, to determine the distinct kinetic parameters. The experimental results showed that, the heating rate influenced significantly on the position of TG curve, and maximum Tm peaks and highest decomposition rate of the jute stick biomass. Moreover, the heating rates also influenced the products of pyrolysis yield, including bio-char, bio-oil, and the non-condensable gas. The average values of activation energy were found to be 139.21 and 135.99 kJ/mol based on FWO and KAS models, respectively.
In the third phase of experiment, The effect of AAEM catalyst (K₂CO₃, Ca(OH)₂ and MgO) on the pyrolysis and gasification of coconut shell and husk were investigated. The experiments were performed in a thermogravimetric analyzer (TG-DTA) and a fixed-bed reactor. The thermogravimetric analysis results showed that the weight loss occurred mainly in the temperature ranges from 200°C to 400°C for coconut shell and husk biomass samples with or without the addition of AAEM catalyst. All catalysts gave higher percentage of gas products and reduce bio-oil and heavy tar when compared with the non-catalytic pyrolysis gas product yield. In addition, the CO₂ gasification reactivity of coconut shell and husk char was improved through the addition of AAEM catalysts, in the order K₂CO₃>Ca(OH)₂>MgO.
The results and information from this study will be helpful for the management of waste biomass as an effective energy conversion process by using pyrolysis and gasification.

この論文で使われている画像

参考文献

1. Chen, H. Chemical composition and structure of natural lignocellulose. In

Biotechnology of lignocellulose. 2014, 25-71. Springer, Dordrecht.

2. Carere, C. R.; Sparling, R.; Cicek, N. & Levin, D. B. Third generation biofuels via

direct cellulose fermentation. International journal of molecular sciences. 2008, 9(7),

1342-1360.

3. Chandra, R. P.; Bura, R.; Mabee, W. E.; Berlin, D. A.; Pan, X. & Saddler J. N. Substrate

pretreatment: the key to effective enzymatic hydrolysis of lignocellulosics?. In Biofuels.

2007, (pp. 67-93). Springer, Berlin, Heidelberg.

4. Dalena, F.; Basile, A. & Rossi, C. (Eds.). Bioenergy systems for the future: prospects

for biofuels and biohydrogen. Woodhead Publishing. 2017.

5. Bala, J. D.; Lalung, J.; Al-Gheethi A. A., & Norli, I. A review on biofuel and

bioresources for environmental applications. In Renewable Energy and Sustainable

Technologies for Building and Environmental Applications. 2016, 205-225. Springer,

Cham.

6. Jindal, M. K. & Jha, M. K. Hydrothermal liquefaction of wood: a critical review.

Reviews in Chemical Engineering. 2016, 32(4), 459-488.

7. Fromm, J.; Rockel; B., Lautner, S.; Windeisen, E. & Wanner, G. Lignin distribution in

wood cell walls determined by TEM and backscattered SEM techniques. Journal of

structural biology. 2003, 143(1), 77-84.

8. Uzun, B. B. & Yaman, E. Pyrolysis kinetics of walnut shell and waste polyolefins using

thermogravimetric analysis. Journal of the Energy Institute. 2017, 90(6), 825-837.

9. Kim, S. S.; Ly, H. V.; Kim, J.; Choi, J. H. & Woo, H. C. Thermogravimetric

characteristics and pyrolysis kinetics of Alga Sagarssum sp. biomass. Bioresource

technology. 2013, 139, 242-248.

10. Cardoso, C. R.; Miranda, M. R.; Santos, K. G. & Ataíde, C. H. Determination of kinetic

parameters and analytical pyrolysis of tobacco waste and sorghum bagasse. Journal of

analytical and applied pyrolysis. 2011, 92(2), 392-400.

11. Gergova, K.; Galushko, A.; Petrov, N. & Minkova, V. Investigation of the porous

structure of activated carbons prepared by pyrolysis of agricultural by-products in a

stream of water vapor. Carbon. 1992, 30(5), 721-727.

85

12. Minkova, V.; Marinov, S. P.; Zanzi, R.; Björnbom, E.; Budinova, T.; Stefanova, M. &

Lakov, L. Thermochemical treatment of biomass in a flow of steam or in a mixture of

steam and carbon dioxide. Fuel Processing Technology. 2000, 62(1), 45-52.

13. Castro, J. B.; Bonelli, P. R.; Cerrella, E. G. & Cukierman, A. L. Phosphoric acid

activation of agricultural residues and bagasse from sugar cane: influence of the

experimental conditions on adsorption characteristics of activated carbons. Industrial

& engineering chemistry research. 2000, 39(11), 4166-4172.

14. Laine, J. & Yunes, S. Effect of the preparation method on the pore size distribution of

activated carbon from coconut shell. Carbon.1992, 30(4), 601-604.

15. Razvigorova, M.; Goranova, M.; Minkova, V. & Cerny, J. On the composition of

volatiles evolved during the production of carbon adsorbents from vegetable wastes.

Fuel. 1994, 73(11), 1718-1722.

16. Al-Khalid, T. T.; Haimour, N. M.; Sayed, S. A. & Akash, B. A. Activation of olive-seed

waste residue using CO2 in a fluidized-bed reactor. Fuel Processing Technology. 1998,

57(1), 55-64.

17. Bridgwater, A. V. Review of fast pyrolysis of biomass and product upgrading. Biomass

and bioenergy. 2012, 38, 68-94.

18. Salatino, P. & Solimene, R. Mixing and segregation in fluidized bed thermochemical

conversion of biomass. Powder Technology. 2017, 316, 29-40.

19. Boyle, G. Renewable energy: power for a sustainable future. Oxford, England, Oxford

University Press in association with the Open University. 2012.

20. Dunnigan, L.; Ashman, P. J.; Zhang, X. & Kwong, C. W. Production of biochar from

rice husk: Particulate emissions from the combustion of raw pyrolysis volatiles. Journal

of Cleaner Production. 2018, 172, 1639-1645.

21. Jenkins, B.; Baxter, L. L.; Miles Jr, T. R. & Miles, T. R. Combustion properties of

biomass. Fuel processing technology. 1998, 54(1-3), 17-46.

22. Johansson, L. S.; Tullin, C.; Leckner, B. & Sjövall, P. Particle emissions from biomass

combustion in small combustors. Biomass and bioenergy. 2003, 25(4), 435-446.

23. Puig-Arnavat, M.; Bruno, J. C. & Coronas, A. Review and analysis of biomass

gasification models. Renewable and sustainable energy reviews. 2010, 14(9), 28412851.

86

24. He, X.; Liu, Z.; Niu, W.; Yang, L.; Zhou, T.; Qin, D.; Niu, Z. & Yuan, Q. Effects of

pyrolysis temperature on the physicochemical properties of gas and biochar obtained

from pyrolysis of crop residues. Energy. 2018, 143, 746-756.

25. Kung, C. C. & Zhang, N. Renewable energy from pyrolysis using crops and agricultural

residuals: An economic and environmental evaluation. Energy, 2015, 90, 1532-1544.

26. Mohan, D.; Pittman Jr, C. U. & Steele, P. H. Pyrolysis of wood/biomass for bio-oil: a

critical review. Energy & fuels. 2006, 20(3), 848-889.

27. Wang, S.; Dai, G.; Yang, H. & Luo, Z. Lignocellulosic biomass pyrolysis mechanism:

a state-of-the-art review. Progress in Energy and Combustion Science. 2017, 62, 33-86.

28. Ward, J., Rasul, M. G. & Bhuiya, M. M. K. Energy recovery from biomass by fast

pyrolysis. Procedia Engineering. 2014, 90(90), 669-74.

29. Zhang, Q.; Chang, J.; Wang, T. & Xu, Y. Review of biomass pyrolysis oil properties

and upgrading research. Energy conversion and management. 2007, 48(1), 87-92.

30. Dhyani, V. & Bhaskar, T. A comprehensive review on the pyrolysis of lignocellulosic

biomass. Renewable Energy. 2018 129, 695-716.

31. Tripathi, M.; Sahu, J. N. & Ganesan, P. Effect of process parameters on production of

biochar from biomass waste through pyrolysis: A review. Renewable and Sustainable

Energy Reviews. 2016, 55, 467-481.

32. Qureshi, K. M.; Lup, A. N. K.; Khan, S., Abnisa, F. & Daud, W. M. A. W. A technical

review on semi-continuous and continuous pyrolysis process of biomass to biooil. Journal of Analytical and Applied Pyrolysis. 2018, 131, 52-75.

33. Kan, T.; Strezov, V. & Evans, T. J. Lignocellulosic biomass pyrolysis: A review of

product properties and effects of pyrolysis parameters. Renewable and Sustainable

Energy Reviews. 2016, 57, 1126-1140.

34. Bartoli, M.; Rosi, L.; Giovannelli, A.; Frediani, P. & Frediani, M. Production of biooils and bio-char from Arundo donax through microwave assisted pyrolysis in a

multimode batch reactor. Journal of Analytical and Applied Pyrolysis. 2016, 122, 479489.

35. Tsai, W. T.; Lee, M. K. & Chang, Y. M. Fast pyrolysis of rice husk: Product yields and

compositions. Bioresource technology. 2007, 98(1), 22-28.

87

36. Sricharoenchaikul, V.; Pechyen, C.; Aht-ong, D. & Atong, D. Preparation and

characterization of activated carbon from the pyrolysis of physic nut (Jatropha curcas

L.) waste. Energy & Fuels. 2008 22(1), 31-37.

37. Omar, R.; Idris, A.; Yunus, R.; Khalid, K. & Isma, M. A. Characterization of empty fruit

bunch for microwave-assisted pyrolysis. Fuel. 2011, 90(4), 1536-1544.

38. Akhtar, J. & Amin, N. S. A review on operating parameters for optimum liquid oil yield

in biomass pyrolysis. Renewable and Sustainable Energy Reviews. 2012, 16(7), 51015109.

39. Islam, M. M. & Ali, M. S. Economic importance of jute in Bangladesh: production,

research achievements and diversification. International Journal of Economic Theory

and Application. 2017, 4(6), 45-57.

40. Hoque, M.M.; Bhattacharya, S.C. Fuel characteristics of gasified coconut shell in a

fluidized and a spouted bed reactor. Energy 2001, 26, 101–110.

41. Siengchum, T.; Isenberg, M.; Chuang, S.S. Fast pyrolysis of coconut biomass–An FTIR

study. Fuel 2013, 105, 559–565.

42. Tsamba, A.J.; Yang, W.; Blasiak, W. Pyrolysis characteristics and global kinetics of

coconut and cashew nut shells. Fuel Process. Technol. 2006, 87, 523–530.

43. Asadullah, M.; Rahman, M. A.; Ali, M. M.; Motin, M. A.; Sultan, M. B.; Alam, M. R.

& Rahman, M. S. Jute stick pyrolysis for bio-oil production in fluidized bed reactor.

Bioresource technology. 2008, 99(1), 44-50.

44. Islam, M. N.; Joardder, M. U. H.; Hoque, S. M. & Uddin, M. A comparative study on

pyrolysis for liquid oil from different biomass solid wastes. Procedia engineering. 2013,

56, 643-649.

45. Enweremadu, C.C.; Mbarawa, M.M. Technical aspects of production and analysis of

biodiesel from used cooking oil—A review. Renew. Sustain. Energy Rev. 2009, 13,

2205–2224.

46. Biswas, S.; Majhi, S.; Mohanty, P.; Pant, K.K.; Sharma, D.K. Effect of different catalyst

on the co-cracking of Jatropha oil, vacuum residue and high density polyethylene. Fuel

2014, 133, 96–105.

47. Goyal, H.B.; Seal, D.; Saxena, R.C. Bio-fuels from thermochemical conversion of

renewable resources: A review. Renew. Sustain. Energy Rev. 2008, 12, 504–517.

88

48. Khan, A.A.; De Jong, W.; Jansens, P.J.; Spliethoff, H. Biomass combustion in fluidized

bed boilers: Potential problems and remedies. Fuel Process. Technol. 2009, 90, 21–50.

49. Park, H.J.; Dong, J.I.; Jeon, J.K.; Park, Y.K.; Yoo, K.S.; Kim, S.S.; Kim, J.; Kim, S.

Effects of the operating parameters on the production of bio-oil in the fast pyrolysis of

Japanese larch. Chem. Eng. J. 2008, 143, 124–132.

50. Mašek, O.; Budarin, V.; Gronnow, M.; Crombie, K.; Brownsort, P.; Fitzpatrick, E.;

Hurst, P. Microwave and slow pyrolysis biochar—Comparison of physical and

functional properties. J. Anal. Appl. Pyrolysis 2013, 100, 41–48.

51. Fu, P.; Hu, S.; Xiang, J.; Sun, L.; Su, S.; Wang, J. Evaluation of the porous structure

development of chars from pyrolysis of rice straw: Effects of pyrolysis temperature and

heating rate. J. Anal. Appl. Pyrolysis 2012, 98, 177–183.

52. Mohanty, P.; Pant, K.K.; Naik, S.N.; Parikh, J.; Hornung, A.; Sahu, J.N. Synthesis of

green fuels from biogenic waste through thermochemical route–The role of

heterogeneous catalyst: A review. Renew. Sustain. Energy Rev. 2014, 38, 131–153.

53. McHenry, M.P. Agricultural bio-char production, renewable energy generation and

farm carbon sequestration in Western Australia: Certainty, uncertainty and risk. Agric.

Ecosyst. Environ. 2009, 129, 1–7.

54. Malghani, S.; Gleixner, G.; Trumbore, S.E. Chars produced by slow pyrolysis and

hydrothermal carbonization vary in carbon sequestration potential and greenhouse

gases emissions. Soil Biol. Biochem. 2013, 62, 137–146.

55. Hao, X.W.; Huang, Y.Z.; Cui, Y.S. Effect of bone char addition on the fractionation and

bio-accessibility of Pb and Zn in combined contaminated soil. Acta Ecol. Sin. 2010, 30,

118–122.

56. Khare, P.; Goyal, D.K. Effect of high and low rank char on soil quality and carbon

sequestration. Ecol. Eng. 2013, 52, 161–166.

57. Rout, T.; Pradhan, D.; Singh, R.K.; Kumari, N. Exhaustive study of products obtained

from coconut shell pyrolysis. J. Environ. Chem. Eng. 2016, 4, 3696–3705.

58. Kim, S.W. Pyrolysis conditions of biomass in fluidized beds for production of bio-oil

compatible with petroleum refinery. J. Anal. Appl. Pyrolysis 2016, 117, 220–227.

59. Le Brech, Y.; Jia, L., Cissé, S.; Mauviel, G.; Brosse, N.; Dufour, A. Mechanisms of

biomass pyrolysis studied by combining a fixed bed reactor with advanced gas analysis.

J. Anal. Appl. Pyrolysis 2016, 117, 334–346.

89

60. Santos, R.M.; Santos, A.O.; Sussuchi, E.M.; Nascimento, J.S.; Lima, Á.S.; Freitas, L.S.

Pyrolysis of mangaba seed: Production and characterization of bio-oil. Bioresour.

Technol. 2015, 196, 43–48.

61. Gu, X.; Ma, X.; Li, L.; Liu, C.; Cheng, K.; Li, Z. Pyrolysis of poplar wood sawdust by

TG-FTIR and Py–GC/MS. J. Anal. Appl. Pyrolysis 2013, 102, 16–23.

62. Raveendran, K.; Ganesh, A.; Khilar, K.C. Influence of mineral matter on biomass

pyrolysis characteristics. Fuel 1995, 74, 1812–1822.

63. Raj, K.G.; Joy, P.A. Coconut shell based activated carbon–iron oxide magnetic

nanocomposite for fast and efficient removal of oil spills. J. Environ. Chem. Eng. 2015,

3, 2068–2075.

64. Tsai, W.T.; Lee, M.K.; Chang, Y.M. Fast pyrolysis of rice straw, sugarcane bagasse and

coconut shell in an induction-heating reactor. J. Anal. Appl. Pyrolysis 2006, 76, 230–

237.

65. Damartzis, T.; Vamvuka, D.; Sfakiotakis, S.; Zabaniotou, A. Thermal degradation

studies and kinetic modeling of cardoon (Cynara cardunculus) pyrolysis using

thermogravimetric analysis (TGA). Bioresour. Technol. 2011, 102, 6230–6238.

66. Sait, H.H.; Hussain, A.; Salema, A.A.; Ani, F.N. Pyrolysis and combustion kinetics of

date palm biomass using thermogravimetric analysis. Bioresour. Technol. 2012, 118,

382–389.

67. Sarenbo, S. Wood ash dilemma-reduced quality due to poor combustion performance.

Biomass Bioenergy 2009, 33, 1212–1220.

68. Kan, T.; Strezov, V.; Evans, T.J. Lignocellulosic biomass pyrolysis: A review of product

properties and effects of pyrolysis parameters. Renew. Sustain. Energy Rev. 2016, 57,

1126–1140.

69. Williams P. T & Besler S. Influence of temperature and heating rate on the slow

pyrolysis of biomass. Renewable Energy. 1996, 7, 233–250.

70. Zhao, X.; Wang, M.; Liu, H.; Li, L.; Ma, C.; Song, Z. A microwave reactor for

characterization of pyrolyzed biomass. Bioresour. Technol. 2012, 104, 673–678.

71. Chen, D.; Liu, D.; Zhang, H.; Chen, Y.; Li, Q. Bamboo pyrolysis using TG–FTIR and

a lab-scale reactor: Analysis of pyrolysis behavior, product properties, and carbon and

energy yields. Fuel 2015, 148, 79–86.

90

72. Kim, K.H.; Eom, I.Y.; Lee, S.M.; Choi, D.; Yeo, H.; Choi, I.G.; Choi, J.W. Investigation

of physicochemical properties of biooils produced from yellow poplar wood

(Liriodendron tulipifera) at various temperatures and residence times. J. Anal. Appl.

Pyrolysis 2011, 92, 2–9.

73. Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Liang, D.T.; Zheng, C. Mechanism of palm oil

waste pyrolysis in a packed bed. Energy Fuels 2006, 20, 1321–1328.

74. Demirbaş, A. Mechanisms of liquefaction and pyrolysis reactions of biomass. Energy

Convers. Manag. 2000, 41, 633–646.

75. Becidan, M.; Skreiberg, Ø.; Hustad, J.E. NOx and N2O Precursors (NH3 and HCN) in

Pyrolysis of Biomass Residues. Energy Fuels 2007, 21, 1173–1180.

76. Encinar, J.M.; Gonzalez, J.F.; Gonzalez, J. Fixed-bed pyrolysis of Cynara cardunculus

L. Product yields and compositions. Fuel Process. Technol. 2000, 68, 209–222.

77. Chen, Y.; Yang, H.; Wang, X.; Zhang, S.; Chen, H. Biomass-based pyrolytic

polygeneration system on cotton stalk pyrolysis: Influence of temperature. Bioresour.

Technol. 2012, 107, 411–418.

78. Yang, H.; Liu, B.; Chen, Y.; Chen, W.; Yang, Q.; Chen, H. Application of biomass

pyrolytic polygeneration technology using retort reactors. Bioresour. Technol. 2016,

200, 64–71.

79. Raveendran, K.; Ganesh, A. Heating value of biomass and biomass pyrolysis products.

Fuel 1996, 75, 1715–1720.

80. Gonzalez, J.F.; Ramiro, A.; González-García, C.M.; Gañán, J.; Encinar, J.M.; Sabio, E.;

Rubiales, J. Pyrolysis of almond shells. Energy applications of fractions. Ind. Eng.

Chem. Res. 2005, 44, 3003–3012.

81. Apaydin-Varol, E.; Uzun, B.B.; Önal, E.; Pütün, A.E. Synthetic fuel production from

cottonseed: Fast pyrolysis and a TGA/FT-IR/MS study. J. Anal. Appl. pyrolysis 2014,

105, 83–90.

82. Demiral, I.; Şensöz, S. The effects of different catalysts on the pyrolysis of industrial

wastes (olive and hazelnut bagasse). Bioresour. Technol. 2008, 99, 8002–8007.

83. Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characteristics of hemicellulose,

cellulose and lignin pyrolysis. Fuel 2007, 86, 1781–1788.

91

84. Domínguez, A.; Fernández, Y.; Fidalgo, B.; Pis, J.J.; Menéndez, J.A. Biogas to syngas

by microwave-assisted dry reforming in the presence of char. Energy Fuels 2007, 21,

2066–2071.

85. Dominguez, A.; Menéndez, J.A.; Fernandez, Y.; Pis, J.J.; Nabais, J.V.; Carrott, P.J.M.;

Carrott, M.R. Conventional and microwave induced pyrolysis of coffee hulls for the

production of a hydrogen rich fuel gas. J. Anal. Appl. Pyrolysis 2007, 79, 128–135.

86. Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Liang, D.T.; Zheng, C. Pyrolysis of palm oil

wastes for enhanced production of hydrogen rich gases. Fuel Process. Technol. 2006,

87, 935–942.

87. Dufour, A.; Girods, P.; Masson, E.; Rogaume, Y.; Zoulalian, A. Synthesis gas

production by biomass pyrolysis: Effect of reactor temperature on product distribution.

Int. J. Hydrog. Energy 2009, 34, 1726–1734.

88. Chen, D.; Zhou, J.; Zhang, Q. Effects of heating rate on slow pyrolysis behavior, kinetic

parameters and products properties of moso bamboo. Bioresour. Technol. 2014, 169,

313–319.

89. Lee, Y.; Park, J.; Ryu, C.; Gang, K.S.; Yang, W.; Park, Y.K.; Jung, J.; Hyun, S.

Comparison of biochar properties from biomass residues produced by slow pyrolysis

at 500 °C. Bioresour. Technol. 2013, 148, 196–201.

90. Setter, C.; Silva, F. T. M.; Assis, M. R.; Ataíde, C. H.; Trugilho, P. F. & Oliveira, T. J. P.

Slow pyrolysis of coffee husk briquettes: Characterization of the solid and liquid

fractions. Fuel. 2020, 261, 116420.

91. Uddin, M. N.; Techato, K.; Taweekun, J.; Rahman, M. M.; Rasul, M. G.; Mahlia, T. M.

I. & Ashrafur, S. M. An overview of recent developments in biomass pyrolysis

technologies. Energies. 2018, 11(11), 3115.

92. Dhyani, V.; Kumar, J. & Bhaskar, T. Thermal decomposition kinetics of sorghum straw

via thermogravimetric analysis. Bioresource technology. 2017, 245, 1122-1129.

93. Jahirul, M. I.; Rasul, M. G.; Chowdhury, A. A. & Ashwath, N. Biofuels production

through biomass pyrolysis—a technological review. Energies. 2012, 5(12), 4952-5001.

94. Kraan, S. Mass-cultivation of carbohydrate rich macroalgae, a possible solution for

sustainable biofuel production. Mitigation and Adaptation Strategies for Global Change.

2013, 18(1), 27-46.

92

95. Dharma, S.; Masjuki, H. H.; Ong, H. C.; Sebayang, A. H.; Silitonga, A. S.; Kusumo, F.

& Mahlia, T. M. I. Optimization of biodiesel production process for mixed Jatropha

curcas–Ceiba pentandra biodiesel using response surface methodology. Energy

Conversion and Management. 2016, 115, 178-190.

96. Choudhury, N. D.; Chutia, R. S.; Bhaskar, T. & Kataki, R. Pyrolysis of jute dust: effect

of reaction parameters and analysis of products. Journal of Material Cycles and Waste

Management. 2014 16(3), 449-459.

97. Fan, X.; Zhu, J. L.; Zheng, A. L.; Wei, X. Y.; Zhao, Y. P.; Cao, J. P.; ... & You, C. Y.

Rapid characterization of heteroatomic molecules in a bio-oil from pyrolysis of rice

husk using atmospheric solids analysis probe mass spectrometry. Journal of Analytical

and Applied Pyrolysis. 2015, 115, 16-23.

98. Rulkens, W. Sewage sludge as a biomass resource for the production of energy:

overview and assessment of the various options. Energy & Fuels. 2008, 22(1), 9-15.

99. Slopiecka, K.; Bartocci, P. & Fantozzi, F. Thermogravimetric analysis and kinetic study

of poplar wood pyrolysis. Applied Energy. 2012, 97, 491-497.

100. Mishra, G.; Kumar, J. & Bhaskar, T. Kinetic studies on the pyrolysis of pinewood.

Bioresource technology. 2015, 182, 282-288.

101. Han, S.; Jang, Y. C.; Choi, Y. S. & Choi, S. K. Thermogravimetric Kinetic Study of

Automobile Shredder Residue (ASR) Pyrolysis. Energies. 2020, 13(6), 1451.

102. Huang, X.; Cao, J. P.; Zhao, X. Y.; Wang, J. X.; Fan, X.; Zhao, Y. P. & Wei, X. Y.

Pyrolysis kinetics of soybean straw using thermogravimetric analysis. Fuel. 2016, 169,

93-98.

103. Szufa, S.; Wielgosiński, G.; Piersa, P.; Czerwińska, J.; Dzikuć, M.; Adrian, Ł.;

Lewandowska W. & Marczak, M. Torrefaction of straw from oats and maize for use as

a fuel and additive to organic fertilizers—TGA analysis, kinetics as products for

agricultural purposes. Energies. 2020, 13(8), 2064.

104. Ceylan, S. & Topçu, Y. Pyrolysis kinetics of hazelnut husk using thermogravimetric

analysis. Bioresource technology. 2014, 156, 182-188.

105. https://www.rigaku.com/en/products/thermal/tgdta

106. https://en.wikipedia.org/wiki/Thermogravimetric_analysis

107. https://en.wikipedia.org/wiki/Differential_thermal_analysis

93

108. Gai, C.; Dong, Y.; & Zhang, T. The kinetic analysis of the pyrolysis of agricultural

residue under non-isothermal conditions. Bioresource technology. 2013, 127, 298-305.

109. Kumar, A.; Wang, L.; Dzenis, Y. A.; Jones, D. D. & Hanna, M. A. Thermogravimetric

characterization of corn stover as gasification and pyrolysis feedstock. Biomass and

Bioenergy. 2008, 32(5), 460-467.

110. Amutio, M.; Lopez, G.; Aguado, R.; Artetxe, M.; Bilbao, J. & Olazar, M. Kinetic study

of lignocellulosic biomass oxidative pyrolysis. Fuel. 2012, 95, 305-311.

111. Damartzis, T.; Vamvuka, D.; Sfakiotakis, S. & Zabaniotou, A. Thermal degradation

studies and kinetic modeling of cardoon (Cynara cardunculus) pyrolysis using

thermogravimetric analysis (TGA). Bioresource technology. 2011, 102(10), 6230-6238.

112. Mythili, R.; Venkatachalam, P.; Subramanian, P. & Uma, D. Characterization of

bioresidues for biooil production through pyrolysis. Bioresource technology. 2013, 138,

71-78.

113. Sait, H. H., Hussain, A.; Salema, A. A. & Ani, F. N. Pyrolysis and combustion kinetics

of date palm biomass using thermogravimetric analysis. Bioresource Technology. 2012,

118, 382-389.

114. Vyazovkin, S.; Burnham, A. K.; Criado, J. M.; Pérez-Maqueda, L. A.; Popescu, C. &

Sbirrazzuoli, N. ICTAC Kinetics Committee recommendations for performing kinetic

computations on thermal analysis data. Thermochimica acta. 2011, 520(1-2), 1-19.

115. Flynn, J. H. & Wall, L. A. A quick, direct method for the determination of activation

energy from thermogravimetric data. Journal of Polymer Science Part B: Polymer

Letters. 1966, 4(5), 323-328.

116. Ozawa, T. A new method of analyzing thermogravimetric data. Bulletin of the

chemical society of Japan. 1965, 38(11), 1881-1886.

117. Kissinger, H. E. Reaction kinetics in differential thermal analysis. Analytical

chemistry. 1957, 29(11), 1702-1706.

118. Akahira, T. & Sunose, T. Method of determining activation deterioration constant of

electrical insulating materials. Res Rep Chiba Inst Technol (Sci Technol). 1971,

16(1971), 22-31.

119. Sarenbo, S. Wood ash dilemma-reduced quality due to poor combustion performance.

Biomass and Bioenergy. 2009, 33(9), 1212-1220.

94

120. Kan, T.; Strezov, V. & Evans, T. J. Lignocellulosic biomass pyrolysis: A review of

product properties and effects of pyrolysis parameters. Renewable and Sustainable

Energy Reviews. 2016, 57, 1126-1140.

121. Ceranic, M.; Kosanic, T.; Djuranovic, D.; Kaludjerovic, Z.; Djuric, S.; Gojkovic, P. &

Bozickovic, R. Experimental investigation of corn cob pyrolysis. Journal of Renewable

and Sustainable Energy. 2016, 8(6), 063102.

122. Chen, Q.; Endo, T. & Wang, Q. Characterization of bamboo after ionic liquid-H2O

pretreatment for the pyrolysis process. BioResources. 2015, 10(2), 2797-2808.

123. Suriapparao, D. V.; Pradeep, N. & Vinu, R. Bio-oil production from Prosopis juliflora

via microwave pyrolysis. Energy & Fuels. 2015, 29(4), 2571-2581.

124. Wang, Q. & Sarkar, J. Pyrolysis behaviors of waste coconut shell and husk biomasses.

Towards Energy Sustainability, 2018, 111.

125. Lv, G. & Wu, S. Analytical pyrolysis studies of corn stalk and its three main

components by TG-MS and Py-GC/MS. Journal of Analytical and Applied Pyrolysis.

2012, 97, 11-18.

126. Gašparovič, L.; Koreňová, Z. & Jelemenský, Ľ. Kinetic study of wood chips

decomposition by TGA. Chemical papers. 2010, 64(2), 174-181.

127. Mishra, R. K. & Mohanty, K. Pyrolysis kinetics and thermal behavior of waste

sawdust biomass using thermogravimetric analysis. Bioresource technology. 2018, 251,

63-74.

128. Strezov, V.; Moghtaderi, B. & Lucas, J. Thermal study of decomposition of selected

biomass samples. Journal of thermal analysis and calorimetry. 2003, 72(3), 1041-1048.

129. Mastral, A. M.; Murillo, R.; Callen, M. S.; Garcia, T. & Snape, C. E. Influence of

process variables on oils from tire pyrolysis and hydropyrolysis in a swept fixed bed

reactor. Energy & Fuels. 2000, 14(4), 739-744.

130. Zhao, B.; O'Connor, D.; Zhang, J.; Peng, T.; Shen, Z.; Tsang, D. C. & Hou, D. Effect

of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived

biochar. Journal of Cleaner Production. 2018, 174, 977-987.

131. Angın, D. Effect of pyrolysis temperature and heating rate on biochar obtained from

pyrolysis of safflower seed press cake. Bioresource technology. 2013, 128, 593-597.

95

132. Fu, P.; Hu, S.; Xiang, J.; Sun, L.; Su, S. & Wang, J. Evaluation of the porous structure

development of chars from pyrolysis of rice straw: Effects of pyrolysis temperature and

heating rate. Journal of Analytical and Applied Pyrolysis. 2012, 98, 177-183.

133. Oyedun, A. O.; Gebreegziabher, T. & Hui, C. W. Mechanism and modelling of bamboo

pyrolysis. Fuel processing technology. 2013, 106, 595-604.

134. Gerçel, H. F. Bio-oil production from Onopordum acanthium L. by slow pyrolysis.

Journal of Analytical and Applied Pyrolysis. 2011, 92(1), 233-238.

135. Salehi, E.; Abedi, J. & Harding, T. Bio-oil from sawdust: Effect of operating

parameters on the yield and quality of pyrolysis products. Energy & fuels. 2011, 25(9),

4145-4154.

136. Acikgoz, C. & Kockar, O. M. Characterization of slow pyrolysis oil obtained from

linseed (Linum usitatissimum L.). Journal of Analytical and Applied Pyrolysis 2009,

85(1-2), 151-154.

137. Yang, H.; Huan, B.; Chen, Y.; Gao, Y.; Li, J. & Chen, H. Biomass-based pyrolytic

polygeneration system for bamboo industry waste: evolution of the char structure and

the pyrolysis mechanism. Energy & Fuels. 2016, 30(8), 6430-6439.

138. Yang, H.; Yan, R.; Chen, H.; Lee, D. H. & Zheng, C. Characteristics of hemicellulose,

cellulose and lignin pyrolysis. Fuel. 2007, 86(12-13), 1781-1788.

139. Kaur, R.; Gera, P.; Jha, M. K. & Bhaskar, T. Pyrolysis kinetics and thermodynamic

parameters of castor (Ricinus communis) residue using thermogravimetric analysis.

Bioresource technology. 2018, 250, 422-428.

140. Lopez-Velazquez, M. A.; Santes, V.; Balmaseda, J. & Torres-Garcia, E. Pyrolysis of

orange waste: a thermo-kinetic study. Journal of Analytical and Applied Pyrolysis. 2013,

99, 170-177.

141. Huang, X.; Cao, J. P.; Zhao, X. Y.; Wang, J. X.; Fan, X.; Zhao, Y. P. & Wei, X. Y.

Pyrolysis kinetics of soybean straw using thermogravimetric analysis. Fuel. 2016, 169,

93-98.

142. Raveendran, K.; Ganesh, A. & Khilar, K. C. Pyrolysis characteristics of biomass and

biomass components. Fuel. 1996, 75(8), 987-998.

143. Williams, P. T. & Horne, P. A. The role of metal salts in the pyrolysis of biomass.

Renewable Energy. 1994, 4(1), 1-13.

96

144. Yaman, S. Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy

conversion and management. 2004, 45(5), 651-671.

145. Löffler, G.; Wargadalam, V. J. & Winter, F. Catalytic effect of biomass ash on CO,

CH4 and HCN oxidation under fluidised bed combustor conditions. Fuel. 2002, 81(6),

711-717.

146. Wang, Z.; Wang, F.; Cao, J. & Wang, J. Pyrolysis of pine wood in a slowly heating

fixed-bed reactor: Potassium carbonate versus calcium hydroxide as a catalyst. Fuel

Processing Technology. 2010, 91(8), 942-950.

147. Gökdai, Z.; Sınağ, A. & Yumak, T. Comparison of the catalytic efficiency of

synthesized nano tin oxide particles and various catalysts for the pyrolysis of hazelnut

shell. Biomass and bioenergy. 2010, 34(3), 402-410.

148. Ahmed, I. I. & Gupta, A. K. Hydrogen production from polystyrene pyrolysis and

gasification: characteristics and kinetics. International journal of hydrogen energy. 2009,

34(15), 6253-6264.

149. Çakal, G. Ö.; Yücel, H. & Gürüz, A. G. Physical and chemical properties of selected

Turkish lignites and their pyrolysis and gasification rates determined by

thermogravimetric analysis. Journal of analytical and applied pyrolysis. 2007, 80(1),

262-268.

150. Tancredi, N.; Cordero, T.; Rodriguez-Mirasol, J. & Rodriguez, J. J. CO2 gasification

of eucalyptus wood chars. Fuel. 1996, 75(13), 1505-1508.

151. Zou, J. H.; Zhou, Z. J.; Wang, F. C.; Zhang, W.; Dai, Z. H.; Liu, H. F. & Yu, Z. H.

Modeling reaction kinetics of petroleum coke gasification with CO2. Chemical

Engineering and Processing: Process Intensification. 2017, 46(7), 630-636.

152. Bayarsaikhan, B.; Hayashi, J. I.; Shimada, T.; Sathe, C.; Li, C. Z.; Tsutsumi, A. &

Chiba, T. Kinetics of steam gasification of nascent char from rapid pyrolysis of a

Victorian brown coal. Fuel. 2005, 84(12-13), 1612-1621.

97

Appendix

Figure 5.1: Location map of waste biomass collection

98

shell

Husk

copra

Water

Figure 5.2: Constituent parts of coconut

99

Waste biomass

Pyrolysis

Gasification

Gas

Bio-oil

Storage

Boiler

Heat

Engine

Electricity

& CHP

Char

Primary product

Storage

Conversion

Turbine

Biofuels &

chemicals

Charcoal

Final product

Figure 5.3: Possible pathway for utilization of waste biomass

100

...

参考文献をもっと見る