リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Latest classification of ependymoma in the molecular era and advances in its treatment: a review」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Latest classification of ependymoma in the molecular era and advances in its treatment: a review

Yamaguchi, Junya Ohka, Fumiharu Motomura, Kazuya Saito, Ryuta 名古屋大学

2023.08

概要

Ependymoma is a neuroepithelial tumor that has a tendency to differentiate
into ependymal cells that make up the ventricular walls and the central canal of the
spinal cord. Although it has been reported that the radial glia produced during the
embryonic period are the origin of the disease, yet the origin of ependymoma is not
well understood(1). Ependymoma begins in the central nervous system (CNS),
including the spinal cord. Ependymoma is a rare tumor that occurs in all age groups,
accounting for 1.6% of all brain tumors and 5.4% of pediatric brain tumors, being one
of the most frequent pediatric brain tumors (2). Ependymomas are a heterogeneous
tumors; however, not all associated oncogenic drivers have been identified, and
unlike other CNS tumors, pathogenic point mutations are rare, and fusion genes and
copy number abnormalities play important roles in its tumorigenesis (3). Although the
progression of ependymomas is not rapid, there are many cases of recurrence and
dissemination after initial treatment. Surgery and radiotherapy have been the
mainstay of treatment for chemo-resistant tumors; however, recent clinical trials have
reassessed the role of chemotherapy. With the introduction of molecular
classification, the classification of ependymomas has become more complicated
according to the latest 2021 World Health Organization (WHO) classification of CNS
tumors, which may make treatment strategies become more complicated in the
future (4). This review aimed to present the latest molecular findings and therapeutic
directions for intracranial ependymomas. ...

参考文献

1. Taylor MD, Poppleton H, Fuller C, et al. Radial glia cells are candidate stem cells

of ependymoma: Cancer Cell. 2005;8(4):323-35.10.1016/j.ccr.2005.09.001

2. Ostrom QT, Patil N, Cioffi G, Waite K, Kruchko C, Barnholtz-Sloan JS. CBTRUS

Statistical Report: Primary Brain and Other Central Nervous System Tumors

Diagnosed in the United States in 2013-2017: Neuro Oncol. 2020;22(12 Suppl 2):iv1iv96.10.1093/neuonc/noaa200

3. Pajtler KW, Witt H, Sill M, et al. Molecular Classification of Ependymal Tumors

across All CNS Compartments, Histopathological Grades, and Age Groups: Cancer

Cell. 2015;27(5):728-43.10.1016/j.ccell.2015.04.002

4. board WHOcote. Central nervous system tumours: International Agency for

Research on Cancer

World Health Organization [distributor]; 2021. xiii, 568 p. p.

5. Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization

Classification of Tumors of the Central Nervous System: a summary: Acta

22

Neuropathol. 2016;131(6):803-20.10.1007/s00401-016-1545-1

6. Ellison DW, Kocak M, Figarella-Branger D, et al. Histopathological grading of

pediatric ependymoma: reproducibility and clinical relevance in European trial

cohorts: J Negat Results Biomed. 2011;10:7.10.1186/1477-5751-10-7

7. Ellison DW, Aldape KD, Capper D, et al. cIMPACT-NOW update 7: advancing the

molecular classification of ependymal tumors: Brain Pathol. 2020;30(5):8636.10.1111/bpa.12866

8. Capper D, Jones DTW, Sill M, et al. DNA methylation-based classification of

central

nervous

system

tumours:

Nature.

2018;555(7697):469-

74.10.1038/nature26000

9. Träger M, Schweizer L, Eilís P, et al. Adult intracranial ependymoma - relevance of

DNA methylation profiling for diagnosis, prognosis and treatment: Neuro Oncol.

2023.10.1093/neuonc/noad030

10. Malgulwar PB, Nambirajan A, Pathak P, et al. C11orf95-RELA fusions and

upregulated NF-KB signalling characterise a subset of aggressive supratentorial

ependymomas that express L1CAM and nestin: J Neurooncol. 2018;138(1):2939.10.1007/s11060-018-2767-y

11. Parker M, Mohankumar KM, Punchihewa C, et al. C11orf95-RELA fusions drive

oncogenic

NF-κB

signalling

in

ependymoma:

Nature.

2014;506(7489):451-

5.10.1038/nature13109

12. Chinnam D, Gupta K, Kiran T, et al. Molecular subgrouping of ependymoma

across three anatomic sites and their prognostic implications: Brain Tumor Pathol.

2022;39(3):151-61.10.1007/s10014-022-00429-2

13. Lim KY, Lee KH, Phi JH, et al. ZFTA-YAP1 fusion-positive ependymoma can

occur

in

the

spinal

cord:

Letter

23

to

the

editor:

Brain

Pathol.

2022;32(1):e13020.10.1111/bpa.13020

14. Zheng T, Ghasemi DR, Okonechnikov K, et al. Cross-Species Genomics Reveals

Oncogenic

Dependencies

in

ZFTA/C11orf95

Fusion-Positive

Supratentorial

Ependymomas: Cancer Discov. 2021;11(9):2230-47.10.1158/2159-8290.Cd-20-0963

15. Tauziède-Espariat A, Siegfried A, Nicaise Y, et al. Supratentorial non-RELA,

ZFTA-fused ependymomas: a comprehensive phenotype genotype correlation

highlighting the number of zinc fingers in ZFTA-NCOA1/2 fusions: Acta Neuropathol

Commun. 2021;9(1):135.10.1186/s40478-021-01238-y

16. Fukuoka K, Kanemura Y, Shofuda T, et al. Significance of molecular classification

of ependymomas: C11orf95-RELA fusion-negative supratentorial ependymomas are

heterogeneous

group

of

tumors:

Acta

Neuropathol

Commun.

2018;6(1):134.10.1186/s40478-018-0630-1

17. Ritzmann TA, Chapman RJ, Kilday JP, et al. SIOP Ependymoma I: Final results,

long-term follow-up, and molecular analysis of the trial cohort-A BIOMECA

Consortium Study: Neuro Oncol. 2022;24(6):936-48.10.1093/neuonc/noac012

18. Merchant TE, Bendel AE, Sabin ND, et al. Conformal Radiation Therapy for

Pediatric Ependymoma, Chemotherapy for Incompletely Resected Ependymoma,

and Observation for Completely Resected, Supratentorial Ependymoma: J Clin

Oncol. 2019;37(12):974-83.10.1200/jco.18.01765

19. Upadhyaya SA, Robinson GW, Onar-Thomas A, et al. Molecular grouping and

outcomes of young children with newly diagnosed ependymoma treated on the multiinstitutional

SJYC07

trial:

Neuro

Oncol.

2019;21(10):1319-

30.10.1093/neuonc/noz069

20. Jünger ST, Andreiuolo F, Mynarek M, et al. CDKN2A deletion in supratentorial

ependymoma with RELA alteration indicates a dismal prognosis: a retrospective

24

analysis of the HIT ependymoma trial cohort: Acta Neuropathol. 2020;140(3):4057.10.1007/s00401-020-02169-z

21. Witt H, Gramatzki D, Hentschel B, et al. DNA methylation-based classification of

ependymomas in adulthood: implications for diagnosis and treatment: Neuro Oncol.

2018;20(12):1616-24.10.1093/neuonc/noy118

22. Andreiuolo F, Varlet P, Tauziède-Espariat A, et al. Childhood supratentorial

ependymomas with YAP1-MAMLD1 fusion: an entity with characteristic clinical,

radiological,

cytogenetic

and

histopathological

features:

Brain

Pathol.

2019;29(2):205-16.10.1111/bpa.12659

23. Pajtler KW, Wei Y, Okonechnikov K, et al. YAP1 subgroup supratentorial

ependymoma requires TEAD and nuclear factor I-mediated transcriptional

programmes for tumorigenesis: Nat Commun. 2019;10(1):3914.10.1038/s41467019-11884-5

24. Tzaridis T, Milde T, Pajtler KW, et al. Low-dose Actinomycin-D treatment reestablishes the tumoursuppressive function of P53 in RELA-positive ependymoma:

Oncotarget. 2016;7(38):61860-73.10.18632/oncotarget.11452

25. Chapman RJ, Ghasemi DR, Andreiuolo F, et al. Optimising biomarkers for

accurate

ependymoma

International

Clinical

diagnosis,

Trials:

prognostication

BIOMECA

and

study:

stratification

within

Neuro

Oncol.

2023.10.1093/neuonc/noad055

26. Panwalkar P, Clark J, Ramaswamy V, et al. Immunohistochemical analysis of

H3K27me3 demonstrates global reduction in group-A childhood posterior fossa

ependymoma and is a powerful predictor of outcome: Acta Neuropathol.

2017;134(5):705-14.10.1007/s00401-017-1752-4

27. Witt H, Mack SC, Ryzhova M, et al. Delineation of two clinically and molecularly

25

distinct subgroups of posterior fossa ependymoma: Cancer Cell. 2011;20(2):14357.10.1016/j.ccr.2011.07.007

28. Pajtler KW, Wen J, Sill M, et al. Molecular heterogeneity and CXorf67 alterations

in posterior fossa group A (PFA) ependymomas: Acta Neuropathol. 2018;136(2):21126.10.1007/s00401-018-1877-0

29. Baroni LV, Sundaresan L, Heled A, et al. Ultra high-risk PFA ependymoma is

characterized by loss of chromosome 6q: Neuro Oncol. 2021;23(8):136070.10.1093/neuonc/noab034

30. Cavalli FMG, Hübner JM, Sharma T, et al. Heterogeneity within the PF-EPN-B

ependymoma subgroup: Acta Neuropathol. 2018;136(2):227-37.10.1007/s00401018-1888-x

31. Pratt D, Lucas CG, Selvam PP, et al. Recurrent ACVR1 mutations in posterior

fossa ependymoma: Acta Neuropathol. 2022;144(2):373-6.10.1007/s00401-02202435-2

32. Plotkin SR, O'Donnell CC, Curry WT, Bove CM, MacCollin M, Nunes FP. Spinal

ependymomas in neurofibromatosis Type 2: a retrospective analysis of 55 patients: J

Neurosurg Spine. 2011;14(4):543-7.10.3171/2010.11.Spine10350

33. Coy S, Rashid R, Stemmer-Rachamimov A, Santagata S. An update on the CNS

manifestations of neurofibromatosis type 2: Acta Neuropathol. 2020;139(4):64365.10.1007/s00401-019-02029-5

34. Garcia C, Gutmann DH. Nf2/Merlin controls spinal cord neural progenitor

function

in

Rac1/ErbB2-dependent

manner:

PLoS

One.

2014;9(5):e97320.10.1371/journal.pone.0097320

35. Benesch M, Frappaz D, Massimino M. Spinal cord ependymomas in children and

adolescents: Childs Nerv Syst. 2012;28(12):2017-28.10.1007/s00381-012-1908-4

26

36. Oh MC, Tarapore PE, Kim JM, et al. Spinal ependymomas: benefits of extent of

resection for different histological grades: J Clin Neurosci. 2013;20(10):13907.10.1016/j.jocn.2012.12.010

37. Scheil S, Brüderlein S, Eicker M, et al. Low frequency of chromosomal

imbalances in anaplastic ependymomas as detected by comparative genomic

hybridization: Brain Pathol. 2001;11(2):133-43.10.1111/j.1750-3639.2001.tb00386.x

38. Swanson AA, Raghunathan A, Jenkins RB, et al. Spinal Cord Ependymomas

With MYCN Amplification Show Aggressive Clinical Behavior: J Neuropathol Exp

Neurol. 2019;78(9):791-7.10.1093/jnen/nlz064

39. Ghasemi DR, Sill M, Okonechnikov K, et al. MYCN amplification drives an

aggressive form of spinal ependymoma: Acta Neuropathol. 2019;138(6):107589.10.1007/s00401-019-02056-2

40. Buczkowicz P, Hoeman C, Rakopoulos P, et al. Genomic analysis of diffuse

intrinsic pontine gliomas identifies three molecular subgroups and recurrent

activating ACVR1 mutations: Nat Genet. 2014;46(5):451-6.10.1038/ng.2936

41. Korshunov A, Schrimpf D, Ryzhova M, et al. H3-/IDH-wild type pediatric

glioblastoma is comprised of molecularly and prognostically distinct subtypes with

associated

oncogenic

drivers:

Acta

Neuropathol.

2017;134(3):507-

16.10.1007/s00401-017-1710-1

42. Barone G, Anderson J, Pearson AD, Petrie K, Chesler L. New strategies in

neuroblastoma: Therapeutic targeting of MYCN and ALK: Clin Cancer Res.

2013;19(21):5814-21.10.1158/1078-0432.Ccr-13-0680

43. Northcott PA, Jones DT, Kool M, et al. Medulloblastomics: the end of the

beginning: Nat Rev Cancer. 2012;12(12):818-34.10.1038/nrc3410

44. Sonneland PR, Scheithauer BW, Onofrio BM. Myxopapillary ependymoma. A

27

clinicopathologic

and

immunocytochemical

study

of

77

cases:

Cancer.

1985;56(4):883-93.10.1002/1097-0142(19850815)56:4<883::aidcncr2820560431>3.0.co;2-6

45. Warnick RE, Raisanen J, Adornato BT, et al. Intracranial myxopapillary

ependymoma: case report: J Neurooncol. 1993;15(3):251-6.10.1007/bf01050071

46. Chakraborti S, Govindan A, Alapatt JP, Radhakrishnan M, Santosh V. Primary

myxopapillary ependymoma of the fourth ventricle with cartilaginous metaplasia: a

case report and review of the literature: Brain Tumor Pathol. 2012;29(1):2530.10.1007/s10014-011-0059-8

47. Ralte AM, Rao S, Sharma MC, Suri A, Gaikwad S, Sarkar C. Myxopapillary

ependymoma of the temporal lobe--report of a rare case of temporal lobe epilepsy:

Clin Neuropathol. 2004;23(2):53-8

48. Bates JE, Choi G, Milano MT. Myxopapillary ependymoma: a SEER analysis of

epidemiology and outcomes: J Neurooncol. 2016;129(2):251-8.10.1007/s11060-0162167-0

49. Nguyen HS, Doan N, Gelsomino M, Shabani S. Intracranial Subependymoma: A

SEER

Analysis

2004-2013:

World

Neurosurg.

2017;101:599-

605.10.1016/j.wneu.2017.02.019

50. Fischer SB, Attenhofer M, Gultekin SH, Ross DA, Heinimann K. TRPS1 gene

alterations

in

human

subependymoma:

Neurooncol.

2017;134(1):133-

8.10.1007/s11060-017-2496-7

51. Robertson PL, Zeltzer PM, Boyett JM, et al. Survival and prognostic factors

following radiation therapy and chemotherapy for ependymomas in children: a report

of

the

Children's

Cancer

Group:

703.10.3171/jns.1998.88.4.0695

28

Neurosurg.

1998;88(4):695-

52. Timmermann B, Kortmann RD, Kühl J, et al. Combined postoperative irradiation

and chemotherapy for anaplastic ependymomas in childhood: results of the German

prospective trials HIT 88/89 and HIT 91: Int J Radiat Oncol Biol Phys.

2000;46(2):287-95.10.1016/s0360-3016(99)00414-9

53. Massimino M, Gandola L, Giangaspero F, et al. Hyperfractionated radiotherapy

and chemotherapy for childhood ependymoma: final results of the first prospective

AIEOP (Associazione Italiana di Ematologia-Oncologia Pediatrica) study: Int J Radiat

Oncol Biol Phys. 2004;58(5):1336-45.10.1016/j.ijrobp.2003.08.030

54. Garvin JH, Jr., Selch MT, Holmes E, et al. Phase II study of pre-irradiation

chemotherapy for childhood intracranial ependymoma. Children's Cancer Group

protocol 9942: a report from the Children's Oncology Group: Pediatr Blood Cancer.

2012;59(7):1183-9.10.1002/pbc.24274

55. Merchant TE, Li C, Xiong X, Kun LE, Boop FA, Sanford RA. Conformal

radiotherapy after surgery for paediatric ependymoma: a prospective study: Lancet

Oncol. 2009;10(3):258-66.10.1016/s1470-2045(08)70342-5

56. Massimino M, Miceli R, Giangaspero F, et al. Final results of the second

prospective AIEOP protocol for pediatric intracranial ependymoma: Neuro Oncol.

2016;18(10):1451-60.10.1093/neuonc/now108

57. Millward CP, Mallucci C, Jaspan T, et al. Assessing 'second-look' tumour

resectability in childhood posterior fossa ependymoma-a centralised review panel

and staging tool for future studies: Childs Nerv Syst. 2016;32(11):218996.10.1007/s00381-016-3225-9

58. Massimino M, Solero CL, Garrè ML, et al. Second-look surgery for ependymoma:

the

Italian

experience:

Neurosurg

50.10.3171/2011.6.Peds1142

29

Pediatr.

2011;8(3):246-

59. Ramaswamy V, Hielscher T, Mack SC, et al. Therapeutic Impact of Cytoreductive

Surgery and Irradiation of Posterior Fossa Ependymoma in the Molecular Era: A

Retrospective

Multicohort

Analysis:

Clin

Oncol.

2016;34(21):2468-

77.10.1200/jco.2015.65.7825

60. Metellus P, Barrie M, Figarella-Branger D, et al. Multicentric French study on

adult intracranial ependymomas: prognostic factors analysis and therapeutic

considerations from a cohort of 152 patients: Brain. 2007;130(Pt 5):133849.10.1093/brain/awm046

61. Korshunov A, Golanov A, Sycheva R, Timirgaz V. The histologic grade is a main

prognostic factor for patients with intracranial ependymomas treated in the

microneurosurgical era: an analysis of 258 patients: Cancer. 2004;100(6):12307.10.1002/cncr.20075

62. Rodríguez D, Cheung MC, Housri N, Quinones-Hinojosa A, Camphausen K,

Koniaris LG. Outcomes of malignant CNS ependymomas: an examination of 2408

cases through the Surveillance, Epidemiology, and End Results (SEER) database

(1973-2005): J Surg Res. 2009;156(2):340-51.10.1016/j.jss.2009.04.024

63. Rudà R, Reifenberger G, Frappaz D, et al. EANO guidelines for the diagnosis

and

treatment

of

ependymal

tumors:

Neuro

Oncol.

2018;20(4):445-

56.10.1093/neuonc/nox166

64. Merchant TE, Sharma S, Xiong X, Wu S, Conklin H. Effect of cerebellum

radiation

dosimetry

ependymoma:

Int

on

cognitive

Radiat

outcomes

in

Oncol

Biol

children

Phys.

with

infratentorial

2014;90(3):547-

53.10.1016/j.ijrobp.2014.06.043

65. Conklin HM, Li C, Xiong X, Ogg RJ, Merchant TE. Predicting change in

academic abilities after conformal radiation therapy for localized ependymoma: J Clin

30

Oncol. 2008;26(24):3965-70.10.1200/jco.2007.15.9970

66. Macdonald SM, Sethi R, Lavally B, et al. Proton radiotherapy for pediatric central

nervous system ependymoma: clinical outcomes for 70 patients: Neuro Oncol.

2013;15(11):1552-9.10.1093/neuonc/not121

67. Ghia AJ, Mahajan A, Allen PK, et al. Supratentorial gross-totally resected nonanaplastic ependymoma: population based patterns of care and outcomes analysis:

J Neurooncol. 2013;115(3):513-20.10.1007/s11060-013-1254-8

68. Nuño M, Yu JJ, Varshneya K, et al. Treatment and survival of supratentorial and

posterior

fossa

ependymomas

in

adults:

Clin

Neurosci.

2016;28:24-

30.10.1016/j.jocn.2015.11.014

69. Bouffet E, Hawkins CE, Ballourah W, et al. Survival benefit for pediatric patients

with recurrent ependymoma treated with reirradiation: Int J Radiat Oncol Biol Phys.

2012;83(5):1541-8.10.1016/j.ijrobp.2011.10.039

70. Kano H, Yang HC, Kondziolka D, et al. Stereotactic radiosurgery for pediatric

recurrent

intracranial

ependymomas:

Neurosurg

Pediatr.

2010;6(5):417-

23.10.3171/2010.8.Peds10252

71. Hoffman LM, Plimpton SR, Foreman NK, et al. Fractionated stereotactic

radiosurgery for recurrent ependymoma in children: J Neurooncol. 2014;116(1):10711.10.1007/s11060-013-1259-3

72. Eaton BR, Chowdhry V, Weaver K, et al. Use of proton therapy for re-irradiation

in

pediatric

intracranial

ependymoma:

Radiother

Oncol.

2015;116(2):301-

8.10.1016/j.radonc.2015.07.023

73. Adolph JE, Fleischhack G, Mikasch R, et al. Local and systemic therapy of

recurrent ependymoma in children and adolescents: short- and long-term results of

the

E-HIT-REZ

2005

study:

Neuro

31

Oncol.

2021;23(6):1012-

23.10.1093/neuonc/noaa276

74. Komori K, Yanagisawa R, Miyairi Y, et al. Temozolomide Treatment for Pediatric

Refractory Anaplastic Ependymoma with Low MGMT Protein Expression: Pediatr

Blood Cancer. 2016;63(1):152-5.10.1002/pbc.25696

75. Rudà R, Bosa C, Magistrello M, et al. Temozolomide as salvage treatment for

recurrent intracranial ependymomas of the adult: a retrospective study: Neuro Oncol.

2016;18(2):261-8.10.1093/neuonc/nov167

76. Gilbert MR, Yuan Y, Wu J, et al. A phase II study of dose-dense temozolomide

and lapatinib for recurrent low-grade and anaplastic supratentorial, infratentorial, and

spinal

cord

ependymoma:

Neuro

Oncol.

2021;23(3):468-

77.10.1093/neuonc/noaa240

77. Robison NJ, Campigotto F, Chi SN, et al. A phase II trial of a multi-agent oral

antiangiogenic (metronomic) regimen in children with recurrent or progressive

cancer: Pediatr Blood Cancer. 2014;61(4):636-42.10.1002/pbc.24794

78. Mendrzyk F, Korshunov A, Benner A, et al. Identification of gains on 1q and

epidermal growth factor receptor overexpression as independent prognostic markers

in

intracranial

ependymoma:

Clin

Cancer

Res.

2006;12(7

Pt

1):2070-

9.10.1158/1078-0432.Ccr-05-2363

79. Gilbertson RJ, Bentley L, Hernan R, et al. ERBB receptor signaling promotes

ependymoma cell proliferation and represents a potential novel therapeutic target for

this disease: Clin Cancer Res. 2002;8(10):3054-64

80. Friedrich C, von Bueren AO, Kolevatova L, et al. Epidermal growth factor

receptor overexpression is common and not correlated to gene copy number in

ependymoma: Childs Nerv Syst. 2016;32(2):281-90.10.1007/s00381-015-2981-2

81. Jakacki RI, Foley MA, Horan J, et al. Single-agent erlotinib versus oral etoposide

32

in patients with recurrent or refractory pediatric ependymoma: a randomized openlabel study: J Neurooncol. 2016;129(1):131-8.10.1007/s11060-016-2155-4

82. Wetmore C, Daryani VM, Billups CA, et al. Phase II evaluation of sunitinib in the

treatment of recurrent or refractory high-grade glioma or ependymoma in children: a

children's Oncology Group Study ACNS1021: Cancer Med. 2016;5(7):141624.10.1002/cam4.713

83. Cash T, Fox E, Liu X, et al. A phase 1 study of prexasertib (LY2606368), a

CHK1/2 inhibitor, in pediatric patients with recurrent or refractory solid tumors,

including CNS tumors: A report from the Children's Oncology Group Pediatric Early

Phase

Clinical

Trials

Network

(ADVL1515):

Pediatr

Blood

Cancer.

2021;68(9):e29065.10.1002/pbc.29065

84. Bukowinski A, Chang B, Reid JM, et al. A phase 1 study of entinostat in children

and adolescents with recurrent or refractory solid tumors, including CNS tumors:

Trial ADVL1513, Pediatric Early Phase-Clinical Trial Network (PEP-CTN): Pediatr

Blood Cancer. 2021;68(4):e28892.10.1002/pbc.28892

85. Qayed M, Cash T, Tighiouart M, et al. A phase I study of sirolimus in combination

with metronomic therapy (CHOAnome) in children with recurrent or refractory solid

and brain tumors: Pediatr Blood Cancer. 2020;67(4):e28134.10.1002/pbc.28134

86. Cole KA, Pal S, Kudgus RA, et al. Phase I Clinical Trial of the Wee1 Inhibitor

Adavosertib (AZD1775) with Irinotecan in Children with Relapsed Solid Tumors: A

COG Phase I Consortium Report (ADVL1312): Clin Cancer Res. 2020;26(6):12139.10.1158/1078-0432.Ccr-19-3470

87. Sandberg DI, Yu B, Patel R, et al. Infusion of 5-Azacytidine (5-AZA) into the

fourth ventricle or resection cavity in children with recurrent posterior Fossa

Ependymoma:

pilot

clinical

trial:

33

Neurooncol.

2019;141(2):449-

57.10.1007/s11060-018-03055-1

88. Pasqualini C, Rubino J, Brard C, et al. Phase II and biomarker study of

programmed

cell

death

protein

inhibitor

nivolumab

and

metronomic

cyclophosphamide in paediatric relapsed/refractory solid tumours: Arm G of AcSéESMART, a trial of the European Innovative Therapies for Children With Cancer

Consortium: Eur J Cancer. 2021;150:53-62.10.1016/j.ejca.2021.03.032

89. Cacciotti C, Choi J, Alexandrescu S, et al. Immune checkpoint inhibition for

pediatric patients with recurrent/refractory CNS tumors: a single institution

experience: J Neurooncol. 2020;149(1):113-22.10.1007/s11060-020-03578-6

90. Khatua S, Cooper LJN, Sandberg DI, et al. Phase I study of intraventricular

infusions of autologous ex vivo expanded NK cells in children with recurrent

medulloblastoma

and

ependymoma:

Neuro

Oncol.

2020;22(8):1214-

25.10.1093/neuonc/noaa047

91. Kieran MW, Goumnerova L, Manley P, et al. Phase I study of gene-mediated

cytotoxic immunotherapy with AdV-tk as adjuvant to surgery and radiation for

pediatric

malignant

glioma

and

recurrent

2019;21(4):537-46.10.1093/neuonc/noy202

34

ependymoma:

Neuro

Oncol.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る