リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「New parameter estimation method being free from the bias depending on sky region for Gravitational wave from compact binary coalescence」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

New parameter estimation method being free from the bias depending on sky region for Gravitational wave from compact binary coalescence

小野, 謙次 東京大学 DOI:10.15083/0002001834

2021.10.04

概要

Since LIGO Scientific collaboration and Virgo collaboration has success- fully detected a Gravitational wave (GW) directly from a compact binary coalescence (CBC) comprising two black holes, new era of the astronomy - GW astronomy - has begun. Astronomers and physicists expect that Gravitational wave astronomy will reveal phenomena that have not been previously clarified via electromagnetic astronomy. The precise discussion of the GW astronomy requires the precise and homogeneous estimation of the GW parameters inserting from all over the sky. Detection of gravita- tional waves(GW) involves using the network of GW telescopes to observe a large sky region. However, owing to the arrangement of the GW telescopes, parameter estimation accuracy deteriorates depending on the sky region of the GW source due to the ill-posed nature of the inverse operator. The instability of the solution of the ill-posed inverse problem causes the ampli- fying the amount of error in the result of the inverse problem even if the error in the given data from GW telescopes is small.

One key method that the deteriorated accuracy of the parameters makes improve is called a regularization method. A regularization method provides the mathematical framework to solve the ill-posed inverse problem stably by adding an appropriate correction term to the ill-posed operator. To avoid the ill-posed problem, certain solutions are suggested for detecting a GW by the network of GW telescopes. However, conventional regularization methods for a coherent search focus on reducing the amplified noise to the theoretical limit and ignore the fact that estimated GW parameters can exceed the value range of the actual parameters because the regulator adds bias noise. In other words, conventional regularization methods cannot optimize all regulator parameters completely.

Our study propose the new parameter estimation method to minimize a whole of the noise including the bias noise and amplified noise due to ill- posed inverse problem by optimizing all regulator parameters. To obtain the optimized parameters for the estimation of amplitude parameters of a GW, the residual of the amplitude parameters of a GW, which is expressed by the norm of the difference between the actual amplitudes and the estimated am- plitudes evaluated using regularized data analysis, must be minimized. The problem of the minimization is that the actual GW amplitudes cannot be predetermined and the estimated point of GW parameters using a regular- ization method frequently lying outside of the residuals when the bias error exceeds the amplified error. To resolve these problems, we propose a La- grange multiplier method with KKT condition for the norm of the difference between the amplitude parameters estimated by the regularized data analy- sis and amplitude parameters estimated by the non-regularization method, i.e., the a-posteriori parameter choice rule provides optimized regulator val- ues.

The data analysis based on a Bayesian analysis is implement by using MultiNest software, which is the Bayesian inference software based on the nested sampling algorithm. The data analysis results indicate that the reg- ularization method with the type 2 regulator reduces the credible region of the accuracy of the amplitude parameters. For approximately 90% of the sky region, the credible region of inclination-distance is reduced by ap- proximately 1.5 times and that of the polarization-initial phase is reduced by approximately 3.0 times. The shrinkage rate of the credible region in- creases with a decreasing determinant value of the inverse operator So we demonstrate that the proposed method can shrink the credible regions of inclination vs luminosity distance and polarization vs initial phase signif- icantly in the sky wherein the accuracy of the amplitude parameters of a GW has been deteriorated.

The proposed method suppresses the systematic error of a GW depend- ing on the sky region and allows us investigating the cosmological informa- tion more precisely.

この論文で使われている画像

参考文献

[1] B. P. Abbott, R. Abbott, R. Adhikari, P. Ajith, B. Allen, G. Allen, R. S. Amin, S. B. Anderson, W. G. Anderson, M. A. Arain, and et al. Ligo: the laser interferometer gravitational-wave observatory. Reports on Progress in Physics, 72(7):076901, 2009.

[2] F. Acernese, M. Agathos, K. Agatsuma, D. Aisa, N. Allemandou, A. Al- locca, J. Amarni, P. Astone, G. Balestri, G. Ballardin, and et al. Ad- vanced virgo: a second-generation interferometric gravitational wave de- tector. Classical and Quantum Gravity, 32(2):024001, 2015.

[3] Yoichi Aso, Yuta Michimura, Kentaro Somiya, Masaki Ando, Os- amu Miyakawa, Takanori Sekiguchi, Daisuke Tatsumi, and Hiroaki Ya- mamoto. Interferometer design of the kagra gravitational wave detector. Phys. Rev. D, 88:043007, Aug 2013.

[4] B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R. X. Adhikari, and et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett., 116:061102, Feb 2016.

[5] B. P. Abbott and et. al. Gw170817: Observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett., 119:161101, Oct 2017.

[6] The LIGO Scientific Collaboration and the Virgo Collaboration. Gwtc- 1: A gravitational-wave transient catalog of compact binary mergers observed by ligo and virgo during the first and second observing runs, 2018.

[7] A. Goldstein, P. Veres, E. Burns, M. S. Briggs, R. Hamburg, D. Ko- cevski, C. A. Wilson-Hodge, R. D. Preece, S. Poolakkil, O. J. Roberts, C. M. Hui, V. Connaughton, J. Racusin, A. von Kienlin, T. Dal Can- ton, N. Christensen, T. Littenberg, K. Siellez, L. Blackburn, J. Broida, E. Bissaldi, W. H. Cleveland, M. H. Gibby, M. M. Giles, R. M. Kippen, S. McBreen, J. McEnery, C. A. Meegan, W. S. Paciesas, and M. Stan- bro. An ordinary short gamma-ray burst with extraordinary implica- tions: Fermi -gbm detection of grb 170817a. The Astrophysical Journal Letters, 848(2):L14, 2017.

[8] V. Savchenko, C. Ferrigno, E. Kuulkers, A. Bazzano, E. Bozzo, S. Brandt, J. Chenevez, T. J.-L. Courvoisier, R. Diehl, A. Domingo, L. Hanlon, E. Jourdain, A. von Kienlin, P. Laurent, F. Lebrun, A. Lu- tovinov, A. Martin-Carrillo, S. Mereghetti, L. Natalucci, J. Rodi, J.-P. Roques, R. Sunyaev, and P. Ubertini. Integral detection of the first prompt gamma-ray signal coincident with the gravitational-wave event gw170817. The Astrophysical Journal Letters, 848(2):L15, 2017.

[9] B. P. Abbott and et. al. Multi-messenger observations of a binary neu- tron star merger. The Astrophysical Journal Letters, 848(2):L12, 2017.

[10] Riccardo Ciolfi. X-ray flashes powered by the spindown of long-lived neutron stars. The Astrophysical Journal, 829(2):72, 2016.

[11] Jimmy A Irwin, W Peter Maksym, Gregory R Sivakoff, Aaron J Ro- manowsky, Dacheng Lin, Tyler Speegle, Ian Prado, David Mildebrath, Jay Strader, Jifeng Liu, and Jon M Miller. Ultraluminous X-ray bursts in two ultracompact companions to nearby elliptical galaxies. Nature, 538:356, oct 2016.

[12] Franz E. Bauer, Ezequiel Treister, Kevin Schawinski, Steve Schulze, Bin Luo, David M. Alexander, William N. Brandt, Andrea Comastri, Fran- cisco Forster, Roberto Gilli, David Alexander Kann, Keiichi Maeda, Ken’ichi Nomoto, Maurizio Paolillo, Piero Ranalli, Donald P. Schnei- der, Ohad Shemmer, Masaomi Tanaka, Alexey Tolstov, Nozomu Tom- inaga, Paolo Tozzi, Cristian Vignali, Junxian Wang, Yongquan Xue, and Guang Yang. A new, faint population of x-ray transients. Monthly Notices of the Royal Astronomical Society, 467(4):4841–4857, 2017.

[13] Tatsuya Matsumoto and Shigeo S. Kimura. Delayed jet breakouts from binary neutron star mergers. The Astrophysical Journal Letters, 866(2):L16, 2018.

[14] Akihiro Suzuki, Keiichi Maeda, and Toshikazu Shigeyama. Relativis- tic supernova ejecta colliding with a circumstellar medium: An appli- cation to the low-luminosity grb 171205a. The Astrophysical Journal, 870(1):38, 2019.

[15] Bernard F. Schutz. Determining the Hubble constant from gravitational wave observations. Nature, 323(6086):310–311, sep 1986.

[16] Daniel E. Holz and Scott A. Hughes. Using gravitational-wave standard sirens. The Astrophysical Journal, 629(1):15, 2005.

[17] Samaya Nissanke, Daniel E. Holz, Neal Dalal, Scott A. Hughes, Jonathan L. Sievers, and Christopher M. Hirata. Determining the hub- ble constant from gravitational wave observations of merging compact binaries, 2013.

[18] Walter Del Pozzo. Inference of cosmological parameters from gravita- tional waves: Applications to second generation interferometers. Phys. Rev. D, 86:043011, Aug 2012.

[19] The LIGO Scientific Collaboration Collaboration, The Virgo, The 1M2H Collaboration, The Dark Energy Camera GW-EM Collaboration Collab- oration, the D E S, The DLT40 Collaboration, The Las Cumbres Obser- vatory Collaboration, The VINROUGE Collaboration, and The MAS- TER Collaboration. A gravitational-wave standard siren measurement of the Hubble constant. Nature, 551(7678):85–88, nov 2017.

[20] Buchner, J., Georgakakis, A., Nandra, K., Hsu, L., Rangel, C., Bright- man, M., Merloni, A., Salvato, M., Donley, J., and Kocevski, D. X-ray spectral modelling of the agn obscuring region in the cdfs: Bayesian model selection and catalogue. A& A, 564:A125, 2014.

[21] Adam G. Riess, Lucas M. Macri, Samantha L. Hoffmann, Dan Scolnic, Stefano Casertano, Alexei V. Filippenko, Brad E. Tucker, Mark J. Reid, David O. Jones, Jeffrey M. Silverman, Ryan Chornock, Peter Challis, Wenlong Yuan, Peter J. Brown, and Ryan J. Foley. A 2.4% determina- tion of the local value of the hubble constant. The Astrophysical Journal, 826(1):56, 2016.

[22] J. Aasi, J. Abadie, B. P. Abbott, R. Abbott, T. D. Abbott, M. Aber- nathy, T. Accadia, F. Acernese, C. Adams, T. Adams, and et al. Param- eter estimation for compact binary coalescence signals with the first gen- eration gravitational-wave detector network. Phys. Rev. D, 88:062001, Sep 2013.

[23] I. W. Harry and S. Fairhurst. Targeted coherent search for gravitational waves from compact binary coalescences. Phys. Rev. D, 83:084002, Apr 2011.

[24] M Rakhmanov. Rank deficiency and tikhonov regularization in the in- verse problem for gravitational-wave bursts. Classical and Quantum Gravity, 23(19):S673, 2006.

[25] S D Mohanty, M Rakhmanov, S Klimenko, and G Mitselmakher. Vari- ability of signal-to-noise ratio and the network analysis of gravitational wave burst signals. Classical and Quantum Gravity, 23(15):4799, 2006.

[26] H.W. Engl, M. Hanke, and A. Neubauer. Regularization of Inverse Prob- lems. Mathematics and Its Applications. Springer Netherlands, 1996.

[27] F. Feroz, M. P. Hobson, and M. Bridges. MULTINEST: an efficient and robust Bayesian inference tool for cosmology and particle physics. ArXiv e-prints, 398:1601–1614, oct 2009.

[28] F. Feroz, M. P. Hobson, E. Cameron, and A. N. Pettitt. Importance Nested Sampling and the MultiNest Algorithm. ArXiv e-prints, jun 2013.

[29] M. Maggiore. Gravitational Waves: Volume 1: Theory and Experiments. Gravitational Waves. OUP Oxford, 2007.

[30] J. D. E. Creighton and W. G. Anderson. Gravitational Waves, in Gravitational-Wave Physics and Astronomy: An Introduction to The- ory, Experiment and Data Analysis. Wiley-VCH, 2011.

[31] K. S. Thorne. Multipole expansions of gravitational radiation. Reviews of Modern Physics, 52:299–340, April 1980.

[32] L. D. Landau and E. M. Lifshitz. The Classical Theory of Fields, Course of Theoretical Physics Volume 2. 1971.

[33] Konstantin Postnov and Lev Yungelson. The Evolution of Compact Binary Star Systems. Living Reviews in Relativity, 17(1):3, jan 2007.

[34] J.D.E. Creighton and W.G. Anderson. Gravitational-Wave Physics and Astronomy: An Introduction to Theory, Experiment and Data Analysis. Wiley Series in Cosmology. Wiley, 2012.

[35] Piotr Jaranowski, Andrzej Kr´olak, and Bernard F. Schutz. Data analysis of gravitational-wave signals from spinning neutron stars: The signal and its detection. Phys. Rev. D, 58:063001, Aug 1998.

[36] Neil J Cornish and Edward K Porter. The search for massive black hole binaries with lisa. Classical and Quantum Gravity, 24(23):5729, 2007.

[37] PETER J. GREEN. Reversible jump markov chain monte carlo compu- tation and bayesian model determination. Biometrika, 82(4):711–732, 1995.

[38] D. Gamerman. Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference. Chapman & Hall/CRC Texts in Statistical Science. Taylor & Francis, 1997.

[39] John Skilling et al. Nested sampling for general bayesian computation. Bayesian Analysis, 1(4):833–859, 2006.

[40] A. Gelman, J.B. Carlin, H.S. Stern, D.B. Dunson, A. Vehtari, and D.B. Rubin. Bayesian Data Analysis, Third Edition. Chapman & Hall/CRC Texts in Statistical Science. Taylor & Francis, 2013.

[41] 繁桝算男. ベイズ統計入門. 東京大学出版会, 1985.

[42] 松原望. 入門ベイズ統計: 意思決定の理論と発展. 東京図書, 2008.

[43] J. Veitch and A. Vecchio. Bayesian coherent analysis of in-spiral gravi- tational wave signals with a detector network. Phys. Rev. D, 81:062003, Mar 2010.

[44] C. W. Helstrom. Statistical Theory of Signal Detection, volume 9 of International Series of Monographs in Electronics and Instrumentation. Pergamon Press, Oxford; New York, 2nd edition, 1968.

[45] B.S. Sathyaprakash and Bernard F. Schutz. Physics, astrophysics and cosmology with gravitational waves. Living Reviews in Relativity, 12(2), 2009.

[46] F. Feroz and M. P. Hobson. Multimodal nested sampling: an efficient and robust alternative to markov chain monte carlo methods for as- tronomical data analyses. Monthly Notices of the Royal Astronomical Society, 384(2):449–463, 2008.

[47] J. R. Shaw, M. Bridges, and M. P. Hobson. Efficient bayesian inference for multimodal problems in cosmology. Monthly Notices of the Royal Astronomical Society, 378(4):1365–1370, 2007.

[48] Pia Mukherjee, David Parkinson, and Andrew R. Liddle. A nested sampling algorithm for cosmological model selection. The Astrophysical Journal Letters, 638(2):L51, 2006.

[49] V.G. Maz’ja and T.O. Shaposhnikova. Jacques Hadamard: A Univer- sal Mathematician. History of mathematics. American Mathematical Society, 1999.

[50] Guorong Wang, Yimin Wei, and Sanzheng Qiao. Generalized inverses: theory and computations. Springer, 2018.

[51] Y. Wang, A.G. Yagola, and C. Yang. Optimization and Regularization for Computational Inverse Problems and Applications. Springer Berlin Heidelberg, 2011.

[52] Eberhard Schock. Approximate Solution of Ill-Posed Equations: Arbi- trarily Slow Convergence vs. Superconvergence BT - Constructive Meth- ods for the Practical Treatment of Integral Equations: Proceedings of the Conference Mathematisches Forschungsinstitut Oberwolfach, June . pages 234–243. Birkh¨auser Basel, Basel, 1985.

[53] M. Abramowitz and I.A. Stegun. Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables. Applied mathematics series. Dover Publications, 1964.

[54] M. Haase. Functional Analysis: An Elementary Introduction. Graduate Studies in Mathematics. American Mathematical Society, 2014.

[55] James Raymond Munkres. Topology second edition. Pearson, 2000.

[56] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cam- bridge University Press, New York, NY, USA, 2004.

[57] The LIGO Scientific Collaboration. Advanced ligo. Classical and Quan- tum Gravity, 32(7):074001, 2015.

[58] B. Allen. Gravitational Wave Detector Sites. ArXiv General Relativity and Quantum Cosmology e-prints, July 1996.

[59] Samantha A. Usman, Joseph C. Mills, and Stephen Fairhurst. Con- straining the inclination of binary mergers from gravitational-wave ob- servations, 2018.

[60] Piotr Jaranowski and Andrzej Krolak. Optimal solution to the inverse problem for the gravitational wave signal of a coalescing compact binary. Phys. Rev. D, 49:1723–1739, Feb 1994.

[61] Eric Poisson and Clifford M. Will. Gravity: Newtonian, Post-Newtonian, Relativistic. Cambridge University Press, 2014.

[62] L. Debnath and P. Mikusinski. Introduction to Hilbert Spaces with Ap- plications. Elsevier Science, 2005.

[63] Harkrishan Lal Vasudeva. Elements of Hilbert Spaces and Operator The- ory. Springer Singapore, 2017.

[64] R. Dautray, M. Artola, J.C. Amson, M. Cessenat, and J.L. Lions. Math- ematical Analysis and Numerical Methods for Science and Technology: Volume 3 Spectral Theory and Applications. Mathematical Analysis and Numerical Methods for Science and Technology. Springer Berlin Heidel- berg, 1999.

[65] E. Hewitt and K. Stromberg. Real and Abstract Analysis. Springer, 1965.

[66] G. Helmberg, H.A. Lauwerier, and W.T. Koiter. Introduction to Spectral Theory in Hilbert Space. North-Holland Series in Applied Mathematics and Mechanics. Elsevier Science, 2014.

[67] R. Dautray, M. Artola, J.C. Amson, M. Cessenat, and J.L. Lions. Math- ematical Analysis and Numerical Methods for Science and Technology: Volume 2 Functional and Variational Methods. Mathematical Analy- sis and Numerical Methods for Science and Technology. Springer Berlin Heidelberg, 2000.

参考文献をもっと見る