リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Physics Impacts of DAQ and Triggers at Large-Scale Hadron Collider Experiments and a New Detector Control and Monitoring Scheme to Achieve the Impact at ALICE」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Physics Impacts of DAQ and Triggers at Large-Scale Hadron Collider Experiments and a New Detector Control and Monitoring Scheme to Achieve the Impact at ALICE

山川 皓生 広島大学

2022.03.04

概要

In this chapter, how modern particle physics has been established with the technical improvements of accelerators and detectors are described firstly. ...

この論文で使われている画像

参考文献

[1] P. K. Sigg, Rf for cyclotrons, CAS - CERN Accelerator l : small accelerators, pp.231-251,

DOI 10.5170/CERN-2006-012.231

[2] F. Halzen and A. D. Martin, Quarks and Leptons, John Wiley & Sons, Inc..

[3] S. Myers and H. Schopper (editors), Particle Physics Reference Library Volume 3 Accelerators and Colliders, Springer Open, DOI : 10.100/978 − 3 − 030 − 34245 − 67 .

[4] V. E. Barnes et al., Observation of a Hyperon with Strangeness Minus Three, Phys. Rev.

Lett. 12, 204 (1964).

[5] J. J. Aubert et al., Experimental Observation of a Heavy Particle J, Phys. Rev. Lett. 33, 1404

(1974).

[6] J. E. Augustin et al., Discovery of a Narrow Resonance in e+ e− Annihilation, Phys. Rev.

Lett. 33, 1406 (1974).

[7] S. W. Herb et al., Observation of a Dimuon Resonance at 9.5-GeV in 400-GeV ProtonNucleus Collisions, Phys. Rev. Lett. 39, 252 (1977).

[8] L. Evans and P. Bryant (editors), LHC machine, 2008 JINST 3 S08001.

[9] CERN Document Server, The CERN accelerator complex - August 2018, OPEN-PHOACCEL-2018-005.

[10] I. Béjar Alonso et al. (Eds.), High-Luminosity Large Hadron Collider (HL-LHC): Technical

design report, CERN Yellow Reports: Monographs, CERN-2020-010 (CERN, Geneva,

2020), doi:10.23731/CYRM-2020-0010.

[11] CERN, Ultimate HL-LHC luminosity - ions stopped after LS4,

https://lhc-commissioning.web.cern.ch/schedule/HL-LHC-plots.htm (20th Augusut

2021 accessed).

[12] P. A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020) and

2021 update.

[13] G. Aad et al. (ATLAS Collaboration), Combined measurements√of Higgs boson production

and decay using up to 80 fb−1 of proton-proton collision data at s = 13 TeV collected with

the ATLAS experiment, Phys. Rev. D 101, 012002.

[14] The

√ ATLAS Collaboration, Combination of searches for Higgs boson pairs in pp collisions

at s = 13 TeV with the ATLAS detector, Phys. Lett. B 800 (2020) 135103.

68

[15] I. Belyaev et al., The history of LHCb, EPJ H 46, 3 (2021).

[16] The LHCb Collaboration, Update of the LHCb combination of the CKM angle γ using

B → DK decays, LHCb-CONF-2018-002 (2018).

[17] The LHCb Collaboration, Letter of Intent for the LHCb Upgrade, CERN-LHCC-2011001.

[18] I. Melzer-Pellmann and P. Pralavorio, Lessons for SUSY from the LHC after the first run,

Eur. Phys. J. C 74, 2801 (2014).

[19] A. Bazavov et al., Equation of state and QCD transition at finite temperature,

Phys. Rev. D 80, 014504 (2009).

[20] T. K. NAYAK, Heavy ions: Results from the Large Hadron Collider, Pramana - J Phys 79,

719–735 (2012).

[21] David d’Enterria, Jet quenching, arXiv:0902.2011.

[22] The CMS Collaboration, Study of high-pT charged particle suppression in PbPb compared

to pp collisions at sNN = 2.76 TeV, Eur. Phys. J. C 72, 1945 (2012).

[23] JET Collaboration, Extracting the jet transport coefficient from jet quenching in highenergy heavy-ion collisions, Phys. Rev. C 90, 014909

[24] M. Asakawa and T. Hatsuda, Jψ and ηc in the Deconfined Plasma from Lattice QCD,

Phys. Rev. Lett. 92, 012001.

[25] H. Satz, Quarkonium Binding and Dissociation: The Spectral Analysis of the QGP, Nucl.

Phys. A (783) 249-260(2007).

[26] Ágnes Mócsy and Péter Petreczky, Color Screening Melts Quarkonium, Phys. Rev. Lett.

99 211602.

[27] The ALICE Collaboration, Differential studies of inclusive J/ψ and ψ(2S) production at

forward rapidity in Pb-Pb collisions at sNN = 2.76 TeV, J. High Energ. Phys. 2016, 179

(2016).

[28] E. Nazarova, Skewness of Event-by-event Elliptic Flow Fluctuations in PbPb collisions at

sNN = 5.02 TeV with CMS, Strangeness in Quark Matter 2017.

[29] PHENIX collaboration, Elliptic Flow of Identified Hadrons in Au + Au Collisions at

sNN = 200 GeV, Phys. Rev. Lett. 91, 182301.

[30] ALICE collaboration, Direct photon production in Pb–Pb collisions at sNN = 2.76 TeV,

Physics Letters B Volume 754, 10 March 2016, Pages 235-248.

[31] Stefano Trogolo for the ALICE Collaboration, D-meson production in Pb–Pb collisions

with ALICE at the LHC, Nucl. Phys. A 1005 (2021) 121747.

[32] ALICE Collaboration, The ALICE experiment at the CERN LHC, 2008 JINST 3 S08002.

[33] ALICE collaboration, ALICE trigger data-acquisition high-level trigger and control system

: Technical Design Report, CERN-LHCC-2003-062; ALICE-TDR-10.

69

[34] ALICE Collaboration, Upgrade of the ALICE Experiment: Letter Of Intent, 2014 J. Phys.

G: Nucl. Part. Phys. 41 087001.

[35] ALICE Collaboration, Technical Design Report for the Upgrade of the ALICE Inner Tracking System, CERN-LHCC-2013-024; ALICE-TDR-017.

[36] W. Snoeys, CMOS monolithic active pixel sensors for high energy physics, Nucl. Instrum.

Methods Phys. Res. Sect. A: Accel. Spectromet. Detect. Assoc. Equip. 765 (2014) 167–171;

hSTD-9 2013—Proceedings of the 9th International Hiroshima Symposium on Development and Application of Semiconductor Tracking Detectors, International Conference Center, Hiroshima, Japan, 2–5 September 2013.

[37] M. Mager, ALPIDE, the monolithic active pixel sensor for the ALICE ITS upgrade, Nucl.

Instrum. Meth. A 824 (2016) 434.

[38] ALICE collaboration, The ALPIDE pixel sensor chip for the upgrade of the ALICE Inner

Tracking System, Nucl. Instrum. Meth. A 845 (2017) 583.

[39] ALICE Collaboration, Addendum to the Technical Design Report for the Upgrade of the

ALICE Time Projection Chamber, CERN-LHCC-2015-002; ALICE-TDR-016-ADD-1.

[40] ALICE Collaboration, Technical Design Report for the Upgrade of the Online-Offline Computing System, CERN-LHCC-2015-006; ALICE-TDR-019.

[41] ALICE Collaboration, Addendum of the Letter of Intent for the upgrade program of the

ALICE experiment: The Muon Forward Tracker, CERN-LHCC-2013-014; LHCC-I-022ADD-1.

[42] ALICE Collaboration, Technical Design Report for the Muon Forward Tracker, CERNLHCC-2015-001; ALICE-TDR-018.

[43] ALICE collaboration, ALICE dimuon forward spectrometer: Technical Design Report,

CERN-LHCC-99-022; ALICE-TDR-5 (1999).

[44] ALICE collaboration, Addendum to the Technical Design Report of the dimuon forward

spectrometer, CERN-LHCC-2000-046, ALICE-TDR-5-add-1 (2000).

[45] LHCb Collaboration, The LHCb Detector at the LHC, 2008 JINST 3 S08005.

[46] D. H. Campora Perez et al., The 40 MHz trigger-less DAQ for the LHCb Upgrade, Nucl.

Instrum. Methods Phys. Res. A 824 (2016) 280–283.

[47] V. V. Gligorov and E. Rodrigues, RTA and DPA dataflow diagrams for Run 1, Run 2, and

the upgraded LHCb detector, LHCb-FIGURE-2020-016.

[48] LHCb Collaboration, LHCb Tracker Upgrade Technical Design Report, CERN-LHCC2014-001; LHCB-TDR-015.

[49] LHCb Collaboration, LHCb VELO Upgrade Technical Design Report, CERN-LHCC2013-021; LHCB-TDR-013.

[50] LHCb Collaboration, LHCb PID Upgrade Technical Design Report, CERN-LHCC-2013022; LHCB-TDR-014.

70

[51] R. Aaij et al., Design and performance of the LHCb trigger and full real-time reconstruction

in Run 2 of the LHC, 2019 JINST 14 P04013.

[52] ATLAS Collaboration, The ATLS Experiment at the CERN Large Hadron Collider, 2008

JINST 3 S08003.

[53] J. Pequenao, Computer generated image of the whole ATLAS detector, CERN Document

Server, CERN-GE-0803012-02.

[54] ATLAS Collaboration. Letter of Intent for the Phase-II Upgrade of the ATLAS Experiment,

CERN-2012-022; LHCC-I-023.

[55] ATLAS Collaboration. ATLAS Phase-II Upgrade Scoping Document, CERN-LHCC-2015020; LHCC-G-166.

[56] ATLAS Collaboration. Technical Design Report for the ATLAS Inner Tracker Pixel Detector, CERN-LHCC-2017-021; ATLAS-TDR-030.

[57] ATLAS Collaboration. Technical Design Report for the ATLAS Inner Tracker Strip Detector, CERN-LHCC-2017-005; ATLAS-TDR-025.

[58] ATLAS Collaboration. ATLAS Liquid Argon Calorimeter Phase-II Upgrade : Technical

Design Report, CERN-LHCC-2017-018; ATLAS-TDR-027.

[59] ATLAS Collaboration. Technical Design Report for the Phase-II Upgrade of the ATLAS

Tile Calorimeter, CERN-LHCC-2017-019; ATLAS-TDR-028.

[60] ATLAS Collaboration. Technical Design Report for the Phase-II Upgrade of the ATLAS

Muon Spectrometer, CERN-LHCC-2017-017; ATLAS-TDR-026.

[61] ATLAS Collaboration. Technical Design Report for the Phase-II Upgrade of the ATLAS

Trigger and Data Acquisition System, CERN-LHCC-2017-020; ATLAS-TDR-029.

[62] CMS Collaboration, The CMS experiment at the CERN LHC, 2008 JINST 3 S08004.

[63] CMS Collaboration, CMS Phase II Upgrade Scope Document, CERN-LHCC-2015-019;

LHCC-G-165.

[64] CMS Collaboration, The Phase-2 Upgrade of the CMS Tracker, CERN-LHCC-2017-009;

CMS-TDR-014.

[65] CMS Collaboration, The Phase-2 Upgrade of the CMS Barrel Calorimeters, CERN-LHCC2017-011; CMS-TDR-015.

[66] CMS Collaboration, The Phase-2 Upgrade of the CMS Endcap Calorimeter, CERN-LHCC2017-023; CMS-TDR-019.

[67] CMS Collaboration, Technical proposal for a MIP timing detector in the CMS experiment

Phase 2 upgrade, CERN-LHCC-2017-027; LHCC-P-009.

[68] CMS Collaboration, A MIP Timing Detector for the CMS Phase-2 Upgrade, CERNLHCC-2019-003; CMS-TDR-020.

71

[69] CMS Collaboration, The Phase-2 Upgrade of the CMS Muon Detectors, CERN-LHCC2017-012; CMS-TDR-016.

[70] CMS Collaboration, Technical Proposal for the Phase-II Upgrade of the CMS Detector,

CERN-LHCC-2015-010; LHCC-P-008; CMS-TDR-15-02.

[71] CMS Collaboration, The Phase-2 Upgrade of the CMS L1 Trigger Interim Technical Design

Report, CERN-LHCC-2017-013; CMS-TDR-017.

[72] CMS Collaboration, The Phase-2 Upgrade of the CMS Level-1 Technical Design Report,

CERN-LHCC-2020-004: CMS-TDR-021.

[73] CMS Collaboration, The Phase-2 Upgrade of the CMS DAQ Interim Technical Design,

CERN-LHCC-2017-014; CMS-TDR-018.

[74] CMS Collaboration, The Phase-2 Upgrade of the CMS Data Acquisition and High Level

Trigger Technical Design Report, CERN-LHCC-2021-007; CMS-TDR-022.

[75] D. Bertolini et al., Pileup per particle identification, J. High Energ. Phys. 2014, 59 (2014).

(https://doi.org/10.1007/JHEP10(2014)059)

[76] C. Fitzpatrick, Too much of a good thing: How to trigger in a signal-rich environment,

EP-IT Data science seminars, CERN, 13th December 2017.

[77] Siemens SIMATIC WinCC OA, https://www.winccoa.com.

[78] P. Chochula et al., Challenges of the ALICE Detector Control System for the LHC RUN3,

ICALEPCS 2017, Barcelona, Spain, pp. 323-327.

[79] J. Lång et al., ADAPOS: An Architecture for Publishing ALICE DCS Conditions Data,

ICALEPCS 2017, Barcelona, Spain, pp. 482-485.

[80] O. Holme, M. González-Berges, P. Golonka, and S. Schmeling, The JCOP Framework,

Tech. Rep. CERN-OPEN-2005-027, CERN, Geneva (2005).

[81] CAEN, https://www.caen.it.

[82] K. Yamakawa et al., Design and implementation of detector control system for muon forward tracker at ALICE, 2020 JINST 15 T10002.

72

73

Acronyms

ADAPOS

AGS

ALF

ALICE

ALPIDE

ATLAS

ALICE datapoint service

alternating gradient synchrotron

ALICE low-level front-end

a large ion collider experiment

ALICE pixel detector

a toroidal LHC apparatus

BC

BCT

BMTF

BNL

barrel calorimeter

barrel calorimeter trigger

barrel muon track finder

Brookhaven national laboratory

CMS

CRU

CSC

CT

CTP

compact muon solenoid

common readout unit

cathode strip chamber

correlator trigger

central trigger processor

DAQ

DCS

DT

data acquisition system

detector control system

drift tube

EASY

EB

ECAL

ECal

EMTF

EPN

embedded assembly system

endcap barrel

electromagnetic calorimeter

electromagnetic calorimeter

endcap muon track finder

event processor node

FEE

FLP

FPGA

FRED

FSM

frontend electronics

first level processor

field programmable gate array

front-end device

finite state machine

GBT

GBT-SCA

GCT

GEM

giga-bit transceiver

GBT slow control adaptor

global calorimeter trigger

gas electron multiplier

74

GUI

graphical user interface

HCAL

HCal

HF

HGCAL

HL-LHC

HLT

HTT

hadron calorimeter

hadron calorimeter

hadron forward calorimeter

high-granularity calorimeter

high-luminosity LHC

high-level trigger

hardware-based tracking for the trigger

iRPC

IT

ITS

improved resistive plate chamber

inner tracker

inner tracking system

JCOP

joint control project

L0

L1

LAr

LB

LBNL

LHC

LHCb

LINAC

Level-0 trigger

Level-1 trigger

liquid-argon calorimeter

long barrel

Lawrence Berkeley National Laboratory

large hadron collider

large hadron collider beauty

linear accelerator

MAPS

MDT

MFT

MIP

CMOS monolithic active pixel sensor

monitor drift tube

muon forward tracker

minimum ionizing particle

NSW

new small wheel

O2

OMTF

OT

online-offline computing system

overlap muon track finder

outer tracker

PHENIX

PID

PLC

PSU

pioneering high-energy nuclear interaction

experiment

particle identification

programmable logic controller

power supply unit

QCD

QGP

quantum chromodynamics

quark-gluon plasma

RHIC

relativistic heavy ion collider

75

RICH

RPC

RU

ring-imaging Cherenkov detector

resistive plate chamber

readout unit

SCADA

SPS

STAR

SUSY

supervisory control and data acquisition

super proton synchrotron

solenoid tracker at RHIC

supersymmetry

TGC

TPC

TT

thin gap chambers

time projection chamber

trigger tracker

VELO

vertex locator

WinCC OA

WinCC open architecture

76

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る