リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Experimental study on the stability and measurement of ultrafine bubbles in water (本文)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Experimental study on the stability and measurement of ultrafine bubbles in water (本文)

田中, 俊也 慶應義塾大学

2021.03.23

概要

国際標準化機構(ISO)によれば、ウルトラファインバブル(UFB)は「体積相当直径 1 μm 未満の気泡」と定義され、数週間以上水中に安定して存在し続ける泡であるとされる。しかしながら、UFB の安定性は古典的な理論では説明できず、研究者の間で議論を呼んでいる。本論文は、この問題を解決する手段として各国研究者間の共同研究の推進を提案し、標準サンプルとなりうる UFB を対象とした安定性試験を実施した。加えて、代表的な UFB の計測法である粒子追跡法(PTA 法)の改善点を指摘し、屈折率に関する新たなデータ解析方法も提案した。

第 1 章は、UFB に関連する用語を整理し、ISO の定義および ISO 規格化の状況、そして学術界の議論をまとめた。UFB が気泡かどうかをめぐって混乱する現状を解決する手段として、国際的な共同研究の推進が一つの解決策となりうると指摘した。

第 2 章では、基礎的な分析操作に不可欠な、希釈・濃縮操作が UFB の安定性に及ぼす影響を検討した。UFB は安定性を保ったまま、任意の濃度に希釈・濃縮可能であった。また、濃縮した UFB 分散液を用いて、動的光散乱法(DLS 法)の解析アルゴリズムを議論した。

第 3 章では、商用 UFB 発生装置を用いた UFB 分散液の製造及び製造した UFB の長期安定性について議論した。まず、UFB 発生挙動について溶存ガスおよび全有機炭素濃度の測定から考察した。続いて、UFB の長期安定性におよぼす保存容器および温度の影響を検討した。UFB の安定性は二次反応型の凝集モデルによって予測できると示し、凝集速度定数をまとめた。

第 4 章ではドイツとカナダの研究機関と協力し、飛行機による国際輸送中の UFB安定性を報告した。安定した輸送のための液充填方法を明らかにした。また、実験室での振動試験により、輸送中の振動が引き起こす液流動が UFB の凝集を促進する可能性を指摘した。加えて、PTA 法の個数濃度測定誤差の原因を明らかにし、その解決策についても考察した。

第5 章では、超音波間接照射によってUFB を不安定化し除去できることを示した。ゼータ電位および電気化学的液物性の測定から、UFB の不安定化メカニズムを明らかにした。UFB の散乱強度および屈折率についても議論し、商用 PTA 装置を用いた汎用性の高い屈折率推定方法を提案した。

第 6 章では本研究で得られた知見についてまとめ、今後 UFB を共同で研究する際に注意を払うべき点や報告されるべき事項について考察した。

以上の通り、本論文では、水中の UFB の基礎物性を明らかにした。同時に、主要な計測装置の改善点と新たな物性解析手法を提案した。

この論文で使われている画像

参考文献

1. ISO TC281 ISO20480-1 Fine bubble technology — General principles for usage and measurement of fine bubbles — Part 1: Terminology Available online: https://www.iso.org/committee/4856666.html.

2. Alheshibri, M.; Qian, J.; Jehannin, M.; Craig, V.S.J. A History of Nanobubbles. Langmuir 2016, 32, 11086–11100, doi:10.1021/acs.langmuir.6b02489.

3. Lohse, D. Bubble puzzles: From fundamentals to applications. Phys. Rev. Fluids 2018, 3, 1–42, doi:10.1103/PhysRevFluids.3.110504.

4. Terasaka, K.; Himuro, S.; Ando, K.; Hata, T. Introduction to Fine Bubble Science and Technology; Nikkan Kogyo Shimbun, Ltd.: Tokyo, 2016; ISBN 9784526076251.

5. Epstein, P.S.; Plesset, M.S. On the Stability of Gas Bubbles in Liquid‐Gas Solutions. J. Chem. Phys. 1950, 18, 1505–1509, doi:10.1063/1.1747520.

6. Iwakiri, M.; Terasaka, K.; Fujioka, S.; Schlüter, M.; Kastens, S.; Tanaka, S. Mass Transfer from a Shrinking Single Microbubble Rising in Water. Japanese J. Multiph. Flow 2017, 30, 529–535, doi:10.3811/jjmf.30.529.

7. Manning, G.S. On the thermodynamic stability of bubbles, immiscible droplets, and cavities. Phys. Chem. Chem. Phys. 2020, 22, 17523–17531, doi:10.1039/D0CP02517H.

8. Takahashi, H.; Morita, A. A molecular dynamics study on inner pressure of microbubbles in liquid argon and water. Chem. Phys. Lett. 2013, 573, 35–40, doi:10.1016/j.cplett.2013.04.041.

9. Borden, M.A.; Longo, M.L. Dissolution Behavior of Lipid Monolayer-Coated, Air- Filled Microbubbles: Effect of Lipid Hydrophobic Chain Length. Langmuir 2002, 18, 9225–9233, doi:10.1021/la026082h.

10. Kwan, J.J.; Borden, M.A. Microbubble Dissolution in a Multigas Environment. Langmuir 2010, 26, 6542–6548, doi:10.1021/la904088p.

11. Duncan, P.B.; Needham, D. Test of the Epstein - Plesset Model for Gas Microparticle Dissolution in Aqueous Media : Effect of Surface Tension and Gas Undersaturation in Solution. Langmuir 2004, 20, 2567–2578, doi:10.1021/la034930i.

12. Yasui, K.; Tuziuti, T.; Kanematsu, W. Mysteries of bulk nanobubbles (ultrafine bubbles); stability and radical formation. Ultrason. Sonochem. 2018, 48, 259–266, doi:10.1016/j.ultsonch.2018.05.038.

13. Yasui, K.; Tuziuti, T.; Kanematsu, W.; Kato, K. Dynamic Equilibrium Model for a Bulk Nanobubble and a Microbubble Partly Covered with Hydrophobic Material. Langmuir 2016, 32, 11101–11110, doi:10.1021/acs.langmuir.5b04703.

14. Tan, B.H.; An, H.; Ohl, C.-D. How Bulk Nanobubbles Might Survive. Phys. Rev. Lett. 2020, 124, 134503, doi:10.1103/PhysRevLett.124.134503.

15. Jadhav, A.J.; Barigou, M. Bulk Nanobubbles or Not Nanobubbles: That is the Question. Langmuir 2020, 36, 1699–1708, doi:10.1021/acs.langmuir.9b03532.

16. Eklund, F. Submicron gas bubbles in water, Chalmers University of Technology, 2020.

17. Uchida, T.; Yamazaki, K.; Gohara, K. Generation of micro- and nano-bubbles in water by dissociation of gas hydrates. Korean J. Chem. Eng. 2016, 33, 1749–1755, doi:10.1007/s11814-016-0032-7.

18. Uchida, T.; Liu, S.; Enari, M.; Oshita, S.; Yamazaki, K.; Gohara, K. Effect of NaCl on the Lifetime of Micro- and Nanobubbles. Nanomaterials 2016, 6, 31, doi:10.3390/nano6020031.

19. Ohgaki, K.; Khanh, N.Q.; Joden, Y.; Tsuji, A.; Nakagawa, T. Physicochemical approach to nanobubble solutions. Chem. Eng. Sci. 2010, 65, 1296–1300, doi:10.1016/j.ces.2009.10.003.

20. Nirmalkar, N.; Pacek, A.W.; Barigou, M. On the Existence and Stability of Bulk Nanobubbles. Langmuir 2018, 34, 10964–10973, doi:10.1021/acs.langmuir.8b01163.

21. Jin, J.; Wang, R.; Tang, J.; Yang, L.; Feng, Z.; Xu, C.; Yang, F.; Gu, N. Dynamic tracking of bulk nanobubbles from microbubbles shrinkage to collapse. Colloids Surfaces A Physicochem. Eng. Asp. 2020, 589, 124430, doi:10.1016/j.colsurfa.2020.124430.

22. Azevedo, A.; Etchepare, R.; Calgaroto, S.; Rubio, J. Aqueous dispersions of nanobubbles: Generation, properties and features. Miner. Eng. 2016, 94, 29–37, doi:10.1016/j.mineng.2016.05.001.

23. Yamazaki, K.; Terasaka, K.; Fujioka, S. Production of Oxygen Ultrafine Bubble Water with Spray Injection from a Pressurized Container. Japanese J. Multiph. Flow 2020, 34, 436–443, doi:10.3811/jjmf.2020.027.

24. Millare, J.C.; Basilia, B.A. Dispersion and electrokinetics of scattered objects in ethanol-water mixtures. Fluid Phase Equilib. 2019, 481, 44–54, doi:10.1016/j.fluid.2018.10.013.

25. Qiu, J.; Zou, Z.; Wang, S.; Wang, X.; Wang, L.; Dong, Y.; Zhao, H.; Zhang, L.; Hu, J. Formation and Stability of Bulk Nanobubbles Generated by Ethanol–Water Exchange. ChemPhysChem 2017, 18, 1345–1350, doi:10.1002/cphc.201700010.

26. Oh, S.H.; Kim, J.M. Generation and Stability of Bulk Nanobubbles. Langmuir 2017, 33, 3818–3823, doi:10.1021/acs.langmuir.7b00510.

27. Lohse, D.; Zhang, X. Surface nanobubbles and nanodroplets. Rev. Mod. Phys. 2015, 87, 981–1035, doi:10.1103/RevModPhys.87.981.

28. Burg, T.P.; Godin, M.; Knudsen, S.M.; Shen, W.; Carlson, G.; Foster, J.S.; Babcock, K.; Manalis, S.R. Weighing of biomolecules, single cells and single nanoparticles in fluid. Nature 2007, 446, 1066–1069, doi:10.1038/nature05741.

29. Kobayashi, H.; Maeda, S.; Kashiwa, M.; Fujita, T. Measurement and identification of ultrafine bubbles by resonant mass measurement method.; Aya, N., Iki, N., Shimura, T., Shirai, T., Eds.; 2014; p. 92320S.

30. Alheshibri, M. Nanobubbles in Bulk, Australian National University, 2019.

31. Kinoshita, T. The method to determine the optimum refractive index parameter in the laser diffraction and scattering method. Adv. Powder Technol. 2001, 12, 589–602, doi:10.1163/15685520152756697.

32. Van Der Pol, E.; Coumans, F.A.W.W.; Sturk, A.; Nieuwland, R.; van Leeuwen, T.G. Refractive index determination of nanoparticles in suspension using nanoparticle tracking analysis. Nano Lett. 2014, 14, 6195–6201, doi:10.1021/nl503371p.

33. Gardiner, C.; Shaw, M.; Hole, P.; Smith, J.; Tannetta, D.; Redman, C.W.; Sargent, I.L.; Gardiner, C.; Shaw, M.; Hole, P.; et al. Measurement of refractive index by nanoparticle tracking analysis reveals heterogeneity in extracellular vesicles. J. Extracell. Vesicles 2014, 3, 25361, doi:10.3402/jev.v3.25361.

34. Midtvedt, D.; Eklund, F.; Olsén, E.; Midtvedt, B.; Swenson, J.; Höök, F. Size and Refractive Index Determination of Subwavelength Particles and Air Bubbles by Holographic Nanoparticle Tracking Analysis. Anal. Chem. 2020, 92, 1908–1915, doi:10.1021/acs.analchem.9b04101.

35. Tuziuti, T.; Yasui, K.; Kanematsu, W. Influence of addition of degassed water on bulk nanobubbles. Ultrason. Sonochem. 2018, 43, 272–274, doi:10.1016/j.ultsonch.2018.01.015.

36. Fang, Z.; Wang, L.; Wang, X.; Zhou, L.; Wang, S.; Zou, Z.; Tai, R.; Zhang, L.; Hu, J. Formation and Stability of Surface/Bulk Nanobubbles Produced by Decompression at Lower Gas Concentration. J. Phys. Chem. C 2018, 122, 22418–22423, doi:10.1021/acs.jpcc.8b05688.

37. Hata, T.; Yamawaki, N.; Nishiuchi, Y.; Okumura, H.; Akamatsu, S. Discrimination of Ultra-fine Bubbles and Solid Nanoparticles Using the Sonoluminescence Effect. Bunseki Kagaku 2019, 68, 847–852, doi:10.2116/bunsekikagaku.68.847.

38. Sugano, K.; Miyoshi, Y.; Inazato, S. Study of Ultrafine Bubble Stabilization by Organic Material Adhesion. Japanese J. Multiph. Flow 2017, 31, 299–306, doi:10.3811/jjmf.31.299.

39. Alheshibri, M.; Craig, V.S.J. Generation of nanoparticles upon mixing ethanol and water; Nanobubbles or Not? J. Colloid Interface Sci. 2019, 542, 136–143, doi:10.1016/j.jcis.2019.01.134.

40. Alheshibri, M.; Jehannin, M.; Coleman, V.A.; Craig, V.S.J. Does gas supersaturation by a chemical reaction produce bulk nanobubbles? J. Colloid Interface Sci. 2019, 554, 388–395, doi:10.1016/j.jcis.2019.07.016.

41. Alheshibri, M.; Craig, V.S.J. Armoured nanobubbles; ultrasound contrast agents under pressure. J. Colloid Interface Sci. 2019, 537, 123–131, doi:10.1016/j.jcis.2018.10.108.

42. Alheshibri, M.; Craig, V.S.J. Differentiating between Nanoparticles and Nanobubbles by Evaluation of the Compressibility and Density of Nanoparticles. J. Phys. Chem. C 2018, 122, 21998–22007, doi:10.1021/acs.jpcc.8b07174.

43. Kim, J.-Y.; Song, M.-G.; Kim, J.-D. Zeta potential of nanobubbles generated by ultrasonication in aqueous alkyl polyglycoside solutions. J. Colloid Interface Sci. 2000, 223, 285–291, doi:10.1006/jcis.1999.6663.

44. Kikuchi, K.; Takeda, H.; Rabolt, B.; Okaya, T.; Ogumi, Z.; Saihara, Y.; Noguchi, H. Hydrogen particles and supersaturation in alkaline water from an Alkali–Ion–Water electrolyzer. J. Electroanal. Chem. 2001, 506, 22–27, doi:10.1016/S0022-0728(01)00517-4.

45. Kukizaki, M.; Goto, M. Size control of nanobubbles generated from Shirasu-porous- glass (SPG) membranes. J. Memb. Sci. 2006, 281, 386–396, doi:10.1016/j.memsci.2006.04.007.

46. Jin, F.; Ye, J.; Hong, L.; Lam, H.; Wu, C. Slow Relaxation Mode in Mixtures of Water and Organic Molecules: Supramolecular Structures or Nanobubbles? J. Phys. Chem. B 2007, 111, 2255–2261, doi:10.1021/jp068665w.

47. Ushikubo, F.Y.; Furukawa, T.; Nakagawa, R.; Enari, M.; Makino, Y.; Kawagoe, Y.; Shiina, T.; Oshita, S. Evidence of the existence and the stability of nano-bubbles in water. Colloids Surfaces A Physicochem. Eng. Asp. 2010, 361, 31–37, doi:10.1016/j.colsurfa.2010.03.005.

48. Liu, S.; Kawagoe, Y.; Makino, Y.; Oshita, S. Effects of nanobubbles on the physicochemical properties of water: The basis for peculiar properties of water containing nanobubbles. Chem. Eng. Sci. 2013, 93, 250–256, doi:10.1016/j.ces.2013.02.004.

49. Matsuki, N.; Ishikawa, T.; Ichiba, S.; Shiba, N.; Ujike, Y.; Yamaguchi, T. Oxygen supersaturated fluid using fine micro/nanobubbles. Int. J. Nanomedicine 2014, 9, 4495, doi:10.2147/IJN.S68840.

50. Ahmadi, R.; Khodadadi, D.A.; Abdollahy, M.; Fan, M. Nano-microbubble flotation of fine and ultrafine chalcopyrite particles. Int. J. Min. Sci. Technol. 2014, 24, 559–566, doi:10.1016/j.ijmst.2014.05.021.

51. Ueda, Y.; Tokuda, Y.; Zushi, T. Electrochemical Performance of Ultrafine Bubble Water. ECS Trans. 2014, 58, 11–19, doi:10.1149/05819.0011ecst.

52. Yasuda, K.; Matsushima, H.; Asakura, Y. Generation and reduction of bulk nanobubbles by ultrasonic irradiation. Chem. Eng. Sci. 2019, 195, 455–461, doi:10.1016/j.ces.2018.09.044.

53. Hole, P.; Sillence, K.; Hannell, C.; Maguire, C.M.; Roesslein, M.; Suarez, G.; Capracotta, S.; Magdolenova, Z.; Horev-Azaria, L.; Dybowska, A.; et al. Interlaboratory comparison of size measurements on nanoparticles using nanoparticle tracking analysis (NTA). J. Nanoparticle Res. 2013, 15, doi:10.1007/s11051-013- 2101-8.

54. Maguire, C.M.; Sillence, K.; Roesslein, M.; Hannell, C.; Suarez, G.; Sauvain, J.-J.; Capracotta, S.; Contal, S.; Cambier, S.; El Yamani, N.; et al. Benchmark of Nanoparticle Tracking Analysis on Measuring Nanoparticle Sizing and Concentration. J. Micro Nano-Manufacturing 2017, 5, 041002, doi:10.1115/1.4037124.

55. European Commission Interlaboratory comparisons | EU Science Hub Available online: https://ec.europa.eu/jrc/en/interlaboratory-comparisons (accessed on Nov 6, 2020).

56. Tanaka, S.; Naruse, Y.; Terasaka, K.; Fujioka, S. Concentration and Dilution of Ultrafine Bubbles in Water. Colloids and Interfaces 2020, 4, 50, doi:10.3390/colloids4040050.

57. Azevedo, A.; Oliveira, H.; Rubio, J. Bulk nanobubbles in the mineral and environmental areas: Updating research and applications. Adv. Colloid Interface Sci. 2019, 271, 101992, doi:10.1016/j.cis.2019.101992.

58. Tantra, R.; Schulze, P.; Quincey, P. Effect of nanoparticle concentration on zeta- potential measurement results and reproducibility. Particuology 2010, 8, 279–285, doi:10.1016/j.partic.2010.01.003.

59. ISO TC24, ISO19430 Particle size analysis —Particle tracking analysis (PTA) method Available online: https://www.iso.org/standard/64890.html.

60. ASTM International ASTM E2834 - 12(2018) Standard Guide for Measurement of Particle Size Distribution of Nanomaterials in Suspension by Nanoparticle Tracking Analysis (NTA) Available online: https://www.astm.org/Standards/E2834.htm.

61. Gross, J.; Sayle, S.; Karow, A.R.; Bakowsky, U.; Garidel, P. Nanoparticle tracking analysis of particle size and concentration detection in suspensions of polymer and protein samples: Influence of experimental and data evaluation parameters. Eur. J. Pharm. Biopharm. 2016, 104, 30–41, doi:10.1016/j.ejpb.2016.04.013.

62. Franks, K.; Kestens, V.; Braun, A.; Roebben, G.; Linsinger, T.P.J. Non-equivalence of different evaluation algorithms to derive mean particle size from dynamic light scattering data. J. Nanoparticle Res. 2019, 21, 195, doi:10.1007/s11051-019-4630-2.

63. Provencher, S.W. Contin: A general purpose constrained regularization program for inverting noisy linear algebraic and integral equations. Comput. Phys. Commun. 1984, 35, C-818-C–819, doi:10.1016/S0010-4655(84)82935-5.

64. Lawson, C.L.; Hanson, R.J. Solving least squares problems; Prentice-Hall series in automatic computation; Prentice-Hall: Englewood Cliffs, 1974; ISBN 9780138225858.

65. Marquardt, D.W. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. J. Soc. Ind. Appl. Math. 1963, 11, 431–441, doi:10.1137/0111030.

66. ISO TC24, ISO22412 Particle size analysis —Dynamic Light Scattering Available online: https://www.iso.org/standard/65410.html.

67. Nirmalkar, N.; Pacek, A.W.; Barigou, M. Interpreting the interfacial and colloidal stability of bulk nanobubbles. Soft Matter 2018, 14, 9643–9656, doi:10.1039/c8sm01949e.

68. Cosgrove, T. Colloid science: principles, methods and applications; Blackwell Publishing Ltd: Oxford, 2005; ISBN 978-1-444-32018-3.

69. Craig, L.C.; Gregory, J.D.; Hausmann, W. Versatile Laboratory Concentration Device. Anal. Chem. 1950, 22, 1462–1462, doi:10.1021/ac60047a601.

70. Russo, P. A Practical Minicourse in Dynamic Light Scattering Available online: http://www.eng.uc.edu/~beaucag/Classes/Characterization/DLS/PaulRussoLSU2012D LS_Minicourse.pdf (accessed on Aug 1, 2020).

71. Stetefeld, J.; McKenna, S.A.; Patel, T.R. Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophys. Rev. 2016, 8, 409–427, doi:10.1007/s12551-016-0218-6.

72. Tanaka, S.; Terasaka, K.; Fujioka, S. Generation and Long‐Term Stability of Ultrafine Bubbles in Water. Chemie Ing. Tech. 2021, In Press, doi:10.1002/cite.202000143.

73. Etchepare, R.; Oliveira, H.; Nicknig, M.; Azevedo, A.; Rubio, J. Nanobubbles: Generation using a multiphase pump, properties and features in flotation. Miner. Eng. 2017, 112, 19–26, doi:10.1016/j.mineng.2017.06.020.

74. Kanematsu, W.; Tuziuti, T.; Yasui, K. The influence of storage conditions and container materials on the long term stability of bulk nanobubbles — Consideration from a perspective of interactions between bubbles and surroundings. Chem. Eng. Sci. 2020, 219, 115594, doi:10.1016/j.ces.2020.115594.

75. Gregory, J. Monitoring particle aggregation processes. Adv. Colloid Interface Sci. 2009, 147–148, 109–123, doi:10.1016/j.cis.2008.09.003.

76. Borwankar, R.P.; Lobo, L.A.; Wasan, D.T. Emulsion stability — kinetics of flocculation and coalescence. Colloids and Surfaces 1992, 69, 135–146, doi:10.1016/0166-6622(92)80224-P.

77. Maeda, Y.; Hosokawa, S.; Baba, Y.; Tomiyama, A.; Ito, Y. Generation mechanism of micro-bubbles in a pressurized dissolution method. Exp. Therm. Fluid Sci. 2015, 60, 201–207, doi:10.1016/j.expthermflusci.2014.09.010.

78. IDEC Co. IDEC Global : Ultrafine Bubble Generation Technology Available online: https://www.idec.com/home/finebubble/index.html (accessed on Sep 30, 2020).

79. Saveyn, H.; De Baets, B.; Thas, O.; Hole, P.; Smith, J.; Van der Meeren, P. Accurate particle size distribution determination by nanoparticle tracking analysis based on 2-D Brownian dynamics simulation. J. Colloid Interface Sci. 2010, 352, 593–600, doi:10.1016/j.jcis.2010.09.006.

80. Kim, A.; Ng, W.B.; Bernt, W.; Cho, N.-J. Validation of Size Estimation of Nanoparticle Tracking Analysis on Polydisperse Macromolecule Assembly. Sci. Rep. 2019, 9, 2639, doi:10.1038/s41598-019-38915-x.

81. van der Pol, E.; Coumans, F.A.W.; Grootemaat, A.E.; Gardiner, C.; Sargent, I.L.; Harrison, P.; Sturk, A.; van Leeuwen, T.G.; Nieuwland, R. Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing. J. Thromb. Haemost. 2014, 12, 1182–1192, doi:10.1111/jth.12602.

82. Defante, A.P.; Vreeland, W.N.; Benkstein, K.D.; Ripple, D.C. Using Image Attributes to Assure Accurate Particle Size and Count Using Nanoparticle Tracking Analysis. J. Pharm. Sci. 2018, 107, 1383–1391, doi:10.1016/j.xphs.2017.12.016.

83. Alargova, R.G.; Deguchi, S.; Tsujii, K. Dynamic light scattering study of polystyrene latex suspended in water at high temperatures and high pressures. Colloids Surfaces A Physicochem. Eng. Asp. 2001, 183–185, 303–312, doi:10.1016/S0927-7757(01)00544-1.

84. Mori, S.; Okamoto, H. A Unified Theory of Determining the Electrophoretic Velocity of Mineral Particles in the Rectangular Micro-Electrophoresis Cell. Flotation 1980, 27, 117–126, doi:10.4144/rpsj1954.27.117.

85. Tanaka, H. Zeta Potential Measurement by the Microelectrophoretic Method (I). Japan Tappi J. 1979, 33, 166–173, doi:10.2524/jtappij.33.2_166.

86. Eklund, F.; Swenson, J. Stable Air Nanobubbles in Water: the Importance of Organic Contaminants. Langmuir 2018, 34, 11003–11009, doi:10.1021/acs.langmuir.8b01724.

87. ISO TC281, ISO21255 Fine bubble technology — Storage and transportation of ultrafine bubble dispersion in water Available online: https://www.iso.org/committee/4856666/x/catalogue/p/1/u/0/w/0/d/0.

88. Kim, M.S.; Han, M.; Kim, T. Il; Lee, J.W.; Kwak, D.H. Effect of nanobubbles for improvement of water quality in freshwater: Flotation model simulation. Sep. Purif. Technol. 2020, 241, doi:10.1016/j.seppur.2020.116731.

89. Tao, D.; Sobhy, A. Nanobubble effects on hydrodynamic interactions between particles and bubbles. Powder Technol. 2019, 346, 385–395, doi:10.1016/j.powtec.2019.02.024.

90. Dragovic, R.A.; Gardiner, C.; Brooks, A.S.; Tannetta, D.S.; Ferguson, D.J.P.; Hole, P.; Carr, B.; Redman, C.W.G.; Harris, A.L.; Dobson, P.J.; et al. Sizing and phenotyping of cellular vesicles using Nanoparticle Tracking Analysis. Nanomedicine Nanotechnology, Biol. Med. 2011, 7, 780–788, doi:10.1016/j.nano.2011.04.003.

91. Tabuchi, T.; Kondo, K.; Bando, K.; Kondo, S.; Tomita, H.; Shiobara, E.; Hayashi, H.; Kato, H.; Nakamura, A.; Matsuura, Y. Real-Time Measurement of Exact Size and Refractive Index of Particles in Liquid by Flow Particle Tracking Method. IEEE Trans. Semicond. Manuf. 2019, 32, 460–464, doi:10.1109/TSM.2019.2942847.

92. Bunkin, N.F.; Shkirin, A. V.; Ignatiev, P.S.; Chaikov, L.L.; Burkhanov, I.S.; Starosvetskij, A. V. Nanobubble clusters of dissolved gas in aqueous solutions of electrolyte. I. Experimental proof. J. Chem. Phys. 2012, 137, 054706, doi:10.1063/1.4739528.

93. Yasui, K.; Tuziuti, T.; Kanematsu, W. Extreme conditions in a dissolving air nanobubble. Phys. Rev. E 2016, 94, 1–13, doi:10.1103/PhysRevE.94.013106.

94. Shirono, K.; Tsugoshi, T. Overview of the proficiency test and its statistical methods. BUNSEKI 2014, 152–160.

95. Singh, S.P.; Singh, J.; Stallings, J.; Burgess, G.; Saha, K. Measurement and analysis of temperature and pressure in high altitude air shipments. Packag. Technol. Sci. 2009, 29, 35–46, doi:10.1002/pts.877.

96. Ishikawa, Y.; Kitazawa, H.; Konno, T. Comparison of Shock during Fruit Export via Air and Marine Transportation. Food Preserv. Sci. 2013, 39, 25–30.

97. Pan, Z.; Kiyama, A.; Tagawa, Y.; Daily, D.J.; Thomson, S.L.; Hurd, R.; Truscott, T.T. Cavitation onset caused by acceleration. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 8470–8474, doi:10.1073/pnas.1702502114.

98. Taniguchi, S.; Kikuchi, A. Mechanisms of Collision and Coagulation between Fine Particles in Fluid. Tetsu-to-Hagane 1992, 78, 527–535, doi:10.2355/tetsutohagane1955.78.4_527.

99. Malvern Ltd Application Note: NanoSight NTA Concentration Measurement Upgrade Available online: https://cdn.technologynetworks.com/TN/Resources/PDF/AN150430NTAConcMeasUp grade.pdf (accessed on Nov 4, 2020).

100. Bachurski, D.; Schuldner, M.; Nguyen, P.H.; Reiners, K.S.; Grenzi, P.C.; Babatz, F.; Schauss, A.C.; Hansen, H.P.; Hallek, M.; Strandmann, E.P. Von; et al. Extracellular vesicle measurements with nanoparticle tracking analysis–An accuracy and repeatability comparison between NanoSight NS300 and ZetaView. J. Extracell. Vesicles 2019, 8, doi:10.1080/20013078.2019.1596016.

101. Tanaka, S.; Kobayashi, H.; Ohuchi, S.; Terasaka, K.; Fujioka, S. Destabilization of ultrafine bubbles in water using indirect ultrasonic irradiation. Ultrason. Sonochem. 2020, 71, 105366, doi:10.1016/j.ultsonch.2020.105366.

102. Wang, Q.; Zhao, H.; Qi, N.; Qin, Y.; Zhang, X.; Li, Y. Generation and Stability of Size-Adjustable Bulk Nanobubbles Based on Periodic Pressure Change. Sci. Rep. 2019, 9, 1118, doi:10.1038/s41598-018-38066-5.

103. Ebina, K.; Shi, K.; Hirao, M.; Hashimoto, J.; Kawato, Y.; Kaneshiro, S.; Morimoto, T.; Koizumi, K.; Yoshikawa, H. Oxygen and Air Nanobubble Water Solution Promote the Growth of Plants, Fishes, and Mice. PLoS One 2013, 8, 2–9, doi:10.1371/journal.pone.0065339.

104. Koda, S. A standard method to calibrate sonochemical efficiency of an individual reaction system. 2003, 10, 149–156, doi:10.1016/S1350-4177(03)00084-1.

105. Sai, H.; Nomura, H. Acoustic bubbles and sonochemistry; Acoustic Science Series No.7; CORONA PUBLISHING CO.,LTD.: Tokyo, 2012; ISBN 9784339013276.

106. Matsuura, Y.; Nakamura, A.; Kato, H. Novel Approach for Reliable Determination of the Refractive Index of Particles in the Liquid Phase Using a Hybrid Flow Particle Tracking Method. Anal. Chem. 2020, 92, 5994–6002, doi:10.1021/acs.analchem.0c00252.

107. Matsuura, Y.; Ouchi, N.; Nakamura, A.; Kato, H. Determination of an accurate size distribution of nanoparticles using particle tracking analysis corrected for the adverse effect of random Brownian motion. Phys. Chem. Chem. Phys. 2018, 20, 17839–17846, doi:10.1039/C7CP08332G.

108. Bunkin, N.F.; Shkirin, A. V; Burkhanov, I.S.; Chaikov, L.L.; Lomkova, A.K. Study of the nanobubble phase of aqueous NaCl solutions by dynamic light scattering. Quantum Electron. 2014, 44, 1022–1028, doi:10.1070/QE2014v044n11ABEH015462.

109. Sonoda, A. Measurement of Ultra Fine Bubble Using Laser Diffraction Method. J. Soc. Powder Technol. Japan 2017, 595, 590–595, doi:10.4164/sptj.54.590.

110. The Chemical Society of Japan Colloid and Suface Chemistry, 4th Edition: principles, application, and measurement; Maruzen Publishing Co., Ltd.: Tokyo, 2018; ISBN 978-4-621-30291-0.

111. Ishikawa, Y.; Katoh, Y.; Ohshima, H. Colloidal stability of aqueous polymeric dispersions: Effect of pH and salt concentration. Colloids Surfaces B Biointerfaces 2005, 42, 53–58, doi:10.1016/j.colsurfb.2005.01.006.

112. Ife, A.F.; Harding, I.H.; Shah, R.M.; Palombo, E.A.; Eldridge, D.S. Effect of pH and electrolytes on the colloidal stability of stearic acid–based lipid nanoparticles. J. Nanoparticle Res. 2018, 20, 318, doi:10.1007/s11051-018-4425-x.

113. Calgaroto, S.; Wilberg, K.Q.; Rubio, J. On the nanobubbles interfacial properties and future applications in flotation. Miner. Eng. 2014, 60, 33–40, doi:10.1016/j.mineng.2014.02.002.

114. Koda, S.; Endo, K.; Kojima, Y.; Nomura, H. Effect of Power Ultrasound on pH Change in Water Saturated with Air, Oxygen, Nitrogen, Argon and Mixtures. Kagaku Kogaku Ronbunshu 1999, 25, 290–293, doi:10.1252/kakoronbunshu.25.290.

115. Supeno; Kruus, P. Sonochemical formation of nitrate and nitrite in water. Ultrason. Sonochem. 2000, 7, 109–113, doi:10.1016/S1350-4177(99)00043-7.

116. Yasui, K.; Tuziuti, T.; Kozuka, T.; Towata, A.; Iida, Y. Relationship between the bubble temperature and main oxidant created inside an air bubble under ultrasound. J. Chem. Phys. 2007, 127, 154502, doi:10.1063/1.2790420.

117. Jiao, J.; He, Y.; Kentish, S.E.; Ashokkumar, M.; Manasseh, R.; Lee, J. Experimental and theoretical analysis of secondary Bjerknes forces between two bubbles in a standing wave. Ultrasonics 2015, 58, 35–42, doi:10.1016/j.ultras.2014.11.016.

118. Nii, S.; Oka, N. Size-selective separation of submicron particles in suspensions with ultrasonic atomization. Ultrason. Sonochem. 2014, 21, 2032–2036, doi:10.1016/j.ultsonch.2014.03.033.

119. Okada, N.; Asakura, Y.; Takeuchi, S. Measurement of Acoustic Pressure Distribution in High-Intensity Ultrasound Fields by Using Tough Hydrophone. Bull. Japan Soc. Sonochemistry 2020, 14, 1–7.

120. AL-Thabaiti, S.A.; Al-Nowaiser, F.M.M.; Obaid, A.Y.Y.; Al-Youbi, A.O.O.; Khan, Z. Formation and characterization of surfactant stabilized silver nanoparticles: A kinetic study. Colloids Surfaces B Biointerfaces 2008, 67, 230–237, doi:10.1016/j.colsurfb.2008.08.022.

121. Cho, S.H.; Kim, J.Y.D.; Chun, J.H.; Kim, J.Y.D. Ultrasonic formation of nanobubbles and their zeta-potentials in aqueous electrolyte and surfactant solutions. Colloids Surfaces A Physicochem. Eng. Asp. 2005, 269, 28–34, doi:10.1016/j.colsurfa.2005.06.063.

122. Hikata, M.; Sakuma, M.; Fukai, Y. Manufacture of Polystyrene Standard Particles and Their Applications. Earozoru Kenkyu 2007, 22, 282–288, doi:10.11203/jar.22.282.

123. Stramski, D.; Tatarkiewicz, J.J.; Reynolds, R.A.; Karr, M. Nanoparticle Analyzer 2017, US9645070B.

124. HORIBA ViewSizer3000 Available online: https://www.horiba.com/fileadmin/uploads/Scientific/Documents/PSA/brochure- viewsizer-3000.pdf (accessed on Nov 3, 2020).

参考文献をもっと見る